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 1 

ABSTRACT 2 

The Integrated Safety Assessment Model (ISAM) is being developed by the FAA for analysis and 3 

assessment of risk in the National Airspace System (NAS). ISAM includes a collection of Event 4 

Sequence Diagrams (ESDs) and their supporting fault trees and hazards. Historical incident and 5 

accident data provide point estimates to quantify the probabilities in the event trees. However, 6 

because accident occurrences are rare, there is some uncertainty in the point estimates. In 7 

particular, many accident event sequences have never been observed and thus are quantified as 8 

having zero probability of occurrence, but this does not mean that such events could never occur. 9 

Because a large number of the quantified parameters in ISAM are rare-events, it is important to 10 

characterize the uncertainty in these estimates in order to estimate the uncertainty in the output 11 

produced by model. The objective of this paper is to quantify the uncertainty of the point estimates 12 

in the model and to infer the resulting uncertainty in the intermediate pivoting event probabilities. 13 

Results indicate that the uncertainty in the pivoting events is driven by the number of accident end 14 

states with no historical observations. 15 

 16 

Keywords: aviation safety, event trees, event sequence diagrams, uncertainty analysis 17 

18 



Zare Noghabi, Shortle  3 

 

 1 

INTRODUCTION  2 

The Integrated Safety Assessment Model (ISAM) is being developed by the FAA for analysis and 3 

assessment of risk in the National Airspace System (NAS) (1). The ISAM safety model includes a 4 

collection of Event Sequence Diagrams (ESDs) and supporting fault trees. Each ESD has a unique 5 

initiating event (e.g., an engine failure on take-off) that branches into multiple paths terminating at 6 

one of the end events. An end event might be an accident (e.g., runway excursion, etc.) or a safe 7 

state (e.g., aircraft stops on runway). The intermediate branching points are called pivoting events. 8 

To quantify the probabilities of the pivoting events, historical incident and accident data are 9 

used. These data provide point estimates for the initiating-event probabilities and the end-event 10 

probabilities, but not typically the intermediate probabilities. These probabilities instead are 11 

quantified by solving a system of equations to make the end-state probabilities consistent with the 12 

initiating-event probabilities via the structure of the tree.  13 

Currently, the end-state probabilities are quantified as point estimates. The point estimate 14 

of an accident probability is the number of historical accidents divided by the total number of 15 

operations over some time period. This is typically a very small number. In fact, because there are 16 

a considerable number of accident event sequences in ISAM, a large number of the end-state 17 

probabilities have a point estimate of zero. Many event sequences have simply never occurred. 18 

However, this does not mean that such events would never occur, it just means that they have not 19 

yet occurred. That is, the point estimate (which is zero) is only an approximation for the “true” 20 

underlying accident probability. Because a large number of the quantified parameters in ISAM are 21 

rare-events, it is important to characterize the uncertainty in these estimates in order to estimate the 22 

uncertainty in the output produced by ISAM.  23 

The objective of this paper is to quantify the uncertainty of the end events in ISAM and to 24 

quantify the resulting uncertainty in the intermediate event probabilities. The rest of the paper is 25 

organized as follows: The next section gives a brief survey of the ESDs in ISAM and the database 26 

used for this study. The methodology is described in two parts including the point estimation 27 

process and the uncertainty analysis method. Finally, results on selected ESDs in ISAM are given. 28 

 29 

A SURVEY OF EVENT SEQUENCE DIAGRAMS AND COLLECTED DATA 30 

The ISAM (version 3.3) causal model contains 35 ESDs capturing all possible initiating events and 31 

their respective accident/incident scenarios. These ESDs are numbered as US-01, …, US-43, 32 

where numbers are not necessarily consecutive. For reference, Table 1 lists all initiating events in 33 

ISAM. Looking at all 35 ESDs, it is observed that similar ESD structures are repeated for different 34 

initiating events. In total, there are 10 different ESD structures which are depicted in Figure 1.  35 

 36 
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 1 
 2 

FIGURE 1 Common ESD structures across ISAM 3 

 4 

The collected data that is used for quantifying these ESDs is a combination of accident 5 

information from the National Transportation Safety Board, the Accident/Incident Data System, 6 

service difficulty reports, and post-hoc interpretation of radar surveillance collected by the FAA. 7 

The dataset includes accident information on 208,582,368 flights operated in the United States 8 

excluding Alaska between 1995 and 2013 consisting of part 121 flights (air carrier operations) and 9 

scheduled part 135 flights (charter and air taxi operations); 579 accidents are reported in the 10 

dataset for 23 different ESDs, which means that 12 of the 35 initiating events have no reported 11 

accidents. Table 1 shows a breakdown of the 35 ESDs. The table shows the number of end states in 12 

each ESD and the number of safe end states (i.e., the number of possible end states in an ESD that 13 

do not represent an accident). The number of end states corresponding to accidents is the number 14 

of end states minus the number of safe state. The table also shows the total number of accident 15 

observations and the number of accident end states with no observations. The shading is simply to 16 

organize the ESDs into groups of similar structure. 17 

 18 

 19 

 20 
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TABLE 1 Summary of ESDs and Data 2 

 3 

ESD Initiating Event # end 

States 

# safe end 

states 

# total 

accident 

observati

ons 

# end 

states 

with zero 

observati

ons 

US01 Aircraft system failure during take-off 12 3 1 8 

US02 ATC event during take-off 12 3 0 9 

US03 Aircraft directional control by flight crew 

inappropriate during take-off 

12 3 5 7 

US04 Aircraft directional control related system 

failure during take-off 

12 3 0 9 

US05 Incorrect configuration during take-off 12 3 2 8 

US09 Single engine failure during take off 12 3 2 7 

US10 Pitch control problem during take-off 12 3 2 8 

US06 Acft takes off w/ contaminated flight surface 2 1 0 1 

US13 Flight control system failure 2 1 3 0 

US14 Flight crew member incapacitation 2 1 0 1 

US15 Ice accretion on aircraft in flight 2 1 1 0 

US16 Airspeed, altitude or attitude display failure 2 1 0 1 

US38 Loss of control due to poor airmanship 2 1 2 0 

US31 Aircraft are positioned on collision course in 

flight 

3 2 1 0 

US32 Runway incursion involving a conflict 3 2 1 0 

US35 Conflict with terrain or obstacle imminent 3 2 4 0 

US36 Conflict on taxiway or apron 3 2 190 0 

US12 Flight crew member spatially disoriented 3 1 1 1 

US26 Aircraft handling by flight crew inappropriate 

during landing roll  

3 1 17 0 

US27 Aircraft directional control related systems 

failure during landing roll 

3 1 22 0 

US37 Wake vortex encounter 3 1 5 0 

US19 Unstable approach 13 3 32 4 

US21 Aircraft weight and balance outside limits 

during approach 

13 3 0 10 

US23 Aircraft encounters wind shear during 

approach or landing 

13 3 2 8 

US25 Aircraft handling by flight crew inappropriate 

during flare 

13 3 32 6 

US40 ATC event during landing 13 3 0 10 

US39 Runway incursion involving incorrect 

presence of single aircraft for takeoff 

13 4 1 9 

US41 Taking off from a taxiway 13 4 0 9 

US17 Aircraft encounters adverse weather 4 1 203 1 

US42 Landing on a taxiway 4 1 0 3 

US43 Landing on the wrong runway 4 1 0 3 

US11 Fire onboard aircraft 4 1 43 0 

US08 Aircraft encounters wind shear after rotation 4 2 0 2 

US33 Cracks in aircraft pressure boundary 4 0 0 0 

US18 Single engine failure in flight 5 2 7 0 
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METHODOLOGY 1 

We use ESD 17 (US17) as an example to explain the methodology for quantification of the 2 

probabilities and the resulting uncertainty analysis. US17 shows the accident and incident 3 

scenarios for the initiating event “Aircraft encounters adverse weather” (Figure 2). An adverse 4 

weather encounter is defined as an encounter with severe turbulence that could result in occupant 5 

injuries, an aircraft upset, or structural damage to the aircraft as a result of overstress of the 6 

aircraft’s structure (2).  7 

 8 

 9 
 10 

FIGURE 2 ESD US-17 – Aircraft Encounters Adverse Weather 11 

 12 

Quantification of ESDs 13 

ESD 17 consists of three pivoting events and four end states. Three of the end states are considered 14 

accidents (in-flight break-up, collision with ground, and flight continues with injury), while one 15 

end state is considered safe (aircraft continues flight). The pivoting events provide the branching 16 

points to the various end states. For example, when an aircraft encounters adverse weather, if the 17 

ultimate design load of the aircraft is exceeded, the result is an in-flight break-up of the aircraft. If 18 

the ultimate design load is not exceeded, the next pivotal event evaluates if the flight crew is able 19 

to control the aircraft, where failure to maintain control of the flight leads to collision with ground. 20 

The last pivoting event indicates the occurrence of passenger or crew injury as a result of 21 

encountering adverse weather. 22 

According to the dataset, the probability of the initiating event is estimated as 4.48E-05 per 23 

flight. The data sample contains one accident of an in-flight break up and 202 encounters with 24 

adverse weather resulting in personal injury; the dataset contains no occurrence of a collision with 25 

the ground. The accident probabilities can then be estimated by dividing the number of accidents 26 

in each case by the number of operations.  The point-estimate probability of an in-flight break up is 27 

4.79E-09 per flight, the point-estimate probability of collision with the ground is zero and the 28 

point-estimate probability of personal injury is 9.68E-07. With these results, we can then 29 

back-calculate the pivoting event probabilities. For example, the conditional probability that the 30 

ultimate design load is exceeded when aircraft encounters adverse weather is 4.79E-09 / 4.48E-05 31 

= 1.07E-04. The conditional probability of failure to maintain control in adverse weather is zero, 32 

and the conditional probability of occurrence of personal injury is 2.16E-02. 33 
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One important issue is that the data set does not contain the number of occurrences of the 1 

safe end states. In this particular ESD, that is not a problem, because the number of safe outcomes 2 

can be obtained by subtracting the total number of accidents from the total number of initiating 3 

events. However, in other ESDs, there may be two or more safe end states, so there is no way to tell 4 

how the safe outcomes are divided among these multiple states. When we have more than one safe 5 

state (i.e., more than one free parameter), additional constraints are required to uniquely determine 6 

the probabilities of the pivoting events. In these situations, we add a constraint that the free 7 

pivoting events have equal probabilities. That is, the probability is “evenly spread out” among the 8 

pivoting events leading to a particular quantified end state, subject to constraints maintaining 9 

consistency with the end-event data.  10 

Another important point is how we treat zeros. In point estimation, when there are zero 11 

observations for an end state, the probability of that end state and the conditional probability of the 12 

immediate event before the end state are zero. However, such an event might occur in the future, so 13 

it is not clear that these values are truly equal to zero. There is uncertainty that comes from a finite 14 

number of observations. In turn, uncertainty in the probabilities of the end states leads to 15 

uncertainty in the pivoting events.  16 

 17 

Uncertainty Analysis 18 

To construct a confidence interval for probabilities of the end states, we choose the Poisson 19 

distribution as the appropriate statistical distribution for the number of accidents observed for each 20 

scenario. The argument for this selection is that incidents are rare events and events are 21 

(approximately) independent between flights. Historical data only gives a point estimate for the 22 

end state probabilities. To construct  confidence intervals for the Poisson mean 23 

parameter, as many as 19 different methods have been suggested in the literature (4) due to the 24 

conservative nature of the exact intervals. In this paper, we use an exact method that is based on the 25 

relationship between the Poisson and Chi-squared distributions (5). In this method, the  26 

confidence interval (CI) for a Poisson distribution with mean  and k observations can be 27 

expressed as: 28 
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,  31 

where   and are respectively the inverse of the chi-squared distribution with  32 

degrees of freedom and the inverse of the gamma distribution with shape parameter  and scale 33 

parameter 1 at the corresponding probability  Table 2 shows the bounds of the 95% confidence 34 

intervals calculated using exact method for different numbers of Poisson observations. To explain 35 

with a simple example, suppose that 2 events are observed in 100 flights. The point estimate for  36 

the true probability of the event, is 0.02. The 95% confidence interval for 100  is [0.242,7.225] 37 

(from the table); hence, the 95% CI for  is [0.0024,0.0722], which is a range including 0.02. 38 

 39 

 40 

 41 

 42 

 43 

 44 
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TABLE 2 Poisson Confidence Limits for alpha=0.05 1 

  2 

Number of 

Observations 
Lower Bound Upper Bound 

0 0.000 3.689 

1 0.025 5.572 

2 0.242 7.225 

3 0.619 8.767 

4 1.090 10.242 

5 1.623 11.668 

10 4.795 18.390 

20 12.217 30.888 

50 37.111 65.919 

100 81.364 121.627 

200 173.241 229.722 

 3 

Now that we have a confidence interval for the end state probabilities, the next step is to 4 

infer the resulting uncertainty in the pivoting events. This is accomplished via the following steps 5 

using Monte-Carlo simulation: 6 

1. Generate a random point estimate (via Monte-Carlo simulation) for each end-event 7 

probability, based on that end event’s confidence interval (this is described in more 8 

detail below). 9 

2. For a given random set of point estimates for the end events, derive the resulting 10 

pivoting event probabilities. This is done in a manner similar to how the pivoting 11 

event probabilities were obtained in Figure 2. This can also be viewed as solving a 12 

system of n equations and n unknowns, where n is the number of pivoting events. 13 

3. Repeat steps 1 and 2. This gives a sample distribution of point estimates for each 14 

pivoting event. 15 

To complete the first step, we need to generate a random rate parameter of the Poisson 16 

distribution for each end state in each simulation run. In Bayesian inference, the conjugate prior for 17 

the rate parameter λ of the Poisson distribution is the gamma distribution. Let  ~ Gamma(,) 18 

denote that λ is distributed according to the gamma distribution with shape parameter α and rate 19 

parameter β. That is, the probability density function for  is: 20 

. 21 

Then, given the sample of n measured values ki (number of observations), and a prior distribution 22 

of , the posterior distribution is . The posterior 23 

mean E[λ] approaches the maximum likelihood estimate in the limit as . We assume 24 

that the uninformed prior probability distribution is  for all the end states. The 25 

posterior mean is: 26 

 27 
For the accident events, n is typically very large, while the number of observations (sum of ki) is 28 

relatively small or zero. Because n is large, the posterior distribution is not sensitive to . However, 29 

when the number of observations (sum of ki) is 0, there is a sensitivity on the prior parameter , but 30 

this is greatly reduced provided there is at least one observation.  31 
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In order to get uncertainty intervals on the pivoting events, we use simulation. In each 1 

simulation run, we generate random numbers for the end-state probabilities based on their 2 

posterior gamma distributions. To get the posterior distribution we need the number of 3 

observations for each scenario and the total number of flights, both of which come from historical 4 

data. Figure 3 shows the simulated distribution of the end-event probabilities (for ESD US-17), 5 

from one million samples. The end event “in-flight break up” has a relatively large uncertainty 6 

band (relative to its mean), since it was quantified with only one observation. In contrast, the end 7 

event “aircraft continues flight with injury” has a relatively tighter uncertainty band, since it was 8 

quantified with 202 events. The safe end state “aircraft continues flight” has a very narrow 9 

uncertainty band since most of the observed flights end in this state (it is not a rare event). The 10 

large amount of data results in a more precise estimate. 11 

 12 

 13 

 14 
 15 

FIGURE 3  ESD US-17 – Histograms on probabilities of end states 16 

 17 

After generating random numbers from the posterior distributions, we solve a system of 18 

equations to get the pivoting event probabilities. The simulation is repeated one million times. 19 

Figure 4 shows the resulting simulated distribution of the pivoting event probabilities.  20 

 21 
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1 
  2 

 3 

FIGURE 4  ESD US-17 – Histograms on probabilities of pivoting events 4 

 5 

One way to measure the uncertainty of each estimate is with its coefficient of variation 6 

(CV), which is the standard deviation of the distribution divided by the mean. In Figure 4, the 7 

vertical line (red) gives the sample mean of the distribution. Since the mean values are 8 

approximately in the center of each graph in Figure 4 (i.e., normalizing the x-axis scales to the 9 

mean), the spread of the distribution is a visual proxy for the CV. Table 3 gives the exact numerical 10 

values for the CV.  The pivoting event US17c2, “flight crew does not maintain control,” (see 11 

Figure 2) has the largest CV. This event leads to an end state with zero observations and therefore 12 

has a point estimate of zero, resulting in a relatively large CV. The pivoting event US17b1, 13 

“ultimate design load exceeded,” also has a fairly large CV, since it leads to an end event with only 14 

one observation. Event US17a1 is the initiating event in Figure 2 (“aircraft encounters adverse 15 

weather”) and has a low CV since it is derived from the full set of incident data. In the next section, 16 

we present the results of our simulations on different ESDs and we try to establish relationships 17 

between the coefficient of variation as a measure of uncertainty and the ESD structure and amount 18 

of data. Figure 5 shows an overall graphical depiction of the uncertainty in each node of the event 19 

tree.  20 

 21 

TABLE 3 Estimated Mean, Standard deviation and CV for US-17 22 

 23 

ID Description Standard 

Deviation 

Mean CV 

US17a1 Aircraft encounters adverse weather 4.63E-07 4.48E-05 0.01 

US17b1 Ultimate design load exceeded 1.12E-04 1.18E-04 0.95 

US17c2 Flight crew does not maintain control 3.37E-05 1.07E-05 3.16 

US17d2 Personal injury 1.50E-03 2.15E-02 0.07 

  24 

 25 
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 1 
 2 

FIGURE 5 ESD US-17 with Histograms on end states and pivoting events 3 

 4 

RESULTS 5 

From 35 ESDs in ISAM, a subset of 18 ESDs are selected for simulation. The selected ESDs 6 

represent a variety in structure, number of observations, and number of end states with zero 7 

observations. Other ESDs are similar to the ones chosen here in terms of structure and the kind of 8 

data that we have for them, except for 3 ESDs for which we have no accident observations and no 9 

data on the probability of initiating events in our dataset, so we cannot investigate them any 10 

further.  11 

Figure 6 shows the coefficient of variation (CV) for the initiating event and all pivoting 12 

events of the selected ESDs. A higher CV denotes greater uncertainty in the estimate. The ESDs 13 

are grouped (color-coded) based on structural similarity as depicted in Figure 1. We cannot see any 14 

meaningful relationship between the structure of the ESDs and the uncertainty in the pivoting 15 

events.  16 
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 3 

FIGURE 6 Comparison of CVs for pivoting events in ESDs with same structure 4 

 5 

The relationship between the maximum CV in each ESD and the number of total observed 6 

accidents for ESDs is shown in Figure 7. There is no discernable trend between these variables. 7 

This is because, for some ESDs, the accidents may be coming from a single end event, so the 8 

pivoting events leading to the other end events (with no observations) have a high CV, even though 9 

the ESD as a whole has a relatively large number of observations. For example, ESD US17 has 10 

more than 200 accidents, but still has a large maximum CV – more than 3, which is similar to the 11 

values observed for many ESDs with zero or one observed accidents.   12 

 13 

 14 
 15 

FIGURE 7 Maximum CV vs number of total accident/incident observations 16 

 17 

The most consistent results are given when we graph the maximum CV for ESDs against the 18 

number of end states with zero observations for that ESD, as shown in Figure 8. When we have end 19 

states with zero observations in an ESD, independent of the number of such states, we get a 20 

maximum coefficient of variation of about 3. Among the ESDs for which we have non-zero 21 

observations for all the end states, the ones with the greater number of accident/incident 22 

observations have the least coefficient of variation. 23 

 24 
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 3 

FIGURE 8 – Maximum CV vs Number of end states with zero observations 4 

 5 

Figure 9 shows the relationship between the percentage of the end states with zero observations 6 

and average CV for each ESD. The increasing trend is clear. When most of the end states have  7 

zero observations, there are greater variances for the probabilities of the end states and this results 8 

in higher average coefficient of variation of pivoting events.  9 

 10 

 11 
 12 

FIGURE 9 – Average CV vs percentage of end states with zero observations 13 

 14 

CONCLUSIONS 15 

In this paper, we presented an uncertainty analysis of the Integrated Safety Assessment Model. 16 

Because the model is quantified by a large number of rare-event probabilities, there is potentially a 17 

large relative uncertainty in the quantified values of the model, which might translate to 18 

uncertainty in the overall model performance. This paper attempted to quantify the uncertainty 19 

using a simulation-based approach which generated random point estimates of the end-event 20 

probabilities based on confidence intervals of the original data and then inferred the resulting 21 

probabilities of intermediate probabilities in the model. We then attempted to relate the relative 22 

size of the uncertainty in each tree to structural properties of the tree. The event trees with the 23 

largest uncertainties generally were trees with the largest number of end events with zero observed 24 
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events. Having a large number of total observed accidents was not the critical factor yielding a low 1 

level of uncertainty in an event tree. Rather, the critical factor was having the observed data be 2 

spread out among all possible end events so that there were no “missing” end events in the tree (i.e., 3 

with zero data).  4 

 5 

This research specifically addressed the Integrated Safety Assessment Model. However, the 6 

methodology is somewhat generic and could be applied to other event tree models. The key 7 

requirement is a data source to quantify all of the end events (and the initiating event) in the event 8 

tree. In this paper, a key limitation is that not all end events are quantified in all of the ESDs, so the 9 

pivoting event probabilities for some ESDs are not uniquely determined. For such cases, the 10 

uncertainty due to unquantified end events may dominate uncertainty due to the rare-event nature 11 

of the data. 12 

 13 

Future work can include sensitivity analysis related to the assumed prior distributions of the end 14 

event probabilities. Future work may also extend the methodology to cases where some of the 15 

intermediate pivoting events are quantified (instead of just the end events). The methodology 16 

would be similar, except that a modified algorithm would be used for mapping the input data 17 

(known quantities) to the unknown model parameters. This research could also be used as a 18 

foundation for establishing a capability within ISAM for providing uncertainty bounds on the 19 

parameter quantification, rather than just a point estimate. This would help to communicate which 20 

parameters are known fairly accurately and which parameters have a large uncertainty. Results 21 

could be used to prioritize data collection efforts that would most effectively improve accuracy of 22 

the model. 23 

 24 

ACKNOWLEDGMENT 25 

This work was sponsored by Dr. Sherry Borener, Program Manager, System Safety Management 26 

Transformation, FAA. The authors also thank Mr. Alan Durston and Mr. Brian Hjelle for 27 

providing data, code, and support to run ISAM in the context of this research. The results and 28 

opinions expressed in this paper are solely those of the authors. 29 

 30 

REFERENCES 31 

 32 

1. Borener, S., S. Trajkov, P. Balakrishna. Design and Development of an Integrated 33 

Safety Assessment Model for NextGen, International Annual Conference of the 34 

American Society for Engineering Management,2012. 35 

2. Noh,S., Shortle, J.F., Sensitivity Analysis of Event Sequence Diagrams for Aircraft 36 

Accident Scenarios, Proceedings of Digital Avionic Systems Conference, 2015, 37 

3E2-1 – 3E2-12. 38 

3. Roelen, A.L.C., B.A. van Doorn, J.W. Smeltink, M.J. Verbeek, R. Wever. 39 

Quantification of Event Sequence Diagrams for a Causal Risk Model of 40 

Commercial Air Transport. National Aerospace Laboratory NLR, the Netherlands, 41 

NLR-CR-2008-646.  42 

4. Patil ,V.V., Kulkarni,H.V.  Comparison of Confidence Intervals for the Poisson 43 

Mean: Some New Aspects,  REVSTAT, Vol. 10, No. 2, 2012, pp. 211–227.   44 

5. Garwood, F. Fiducial Limits for Poisson Distribution. Biometrika, Vol. 28, No. 3/4 45 

(Dec., 1936), pp. 437-442. 46 


