Rare-Event Simulation and Sensitivity Analysis for Potential En-Route Wake Encounters

Azin Zare-Noghabi John Shortle George Mason University

NEXTOR II Symposium Oct. 26, 2018

Motivation

- Objective: Establish a toolset for estimating potential wake encounters en-route
- Can be used to evaluate:
 - Impact of changes to fleet mix and disparity in aircraft sizes
 - Impact of separation reductions
 - Capacity benefits for dynamic wake separation concepts
 - Effectiveness of mitigation procedures

Research Overview

Data Collection Objectives

- Characterize in-trail flight tracks
 - Distribution of along-track separation
 - Distribution of speed
 - Distribution of altitude
- Distributions used to quantify stochasticdistribution parameters in potential wake-encounter simulation model

Snapshots of Aircraft Position

Source: ADS-B Exchange

Data Summary

- Identify trailing aircraft pairs from ADS-B exchange
 - Flying at the same altitude above 30,000 ft
 - Have a distance less than 20 nautical miles for at least 10 minutes.
 - Other filters applied to identify in-trail pairs
- U.S. data collected
 - 3 weeks in July 2017
 - 2 weeks in February 2018
 - 3,531 trailing pairs identified
- Europe data collected
 - 2 weeks in July 2017
 - 1,942 pairs were identified

Caveat: Analysis does not consider trailing aircraft one flight level below

Examples of Non-Trailing Pairs

Crossing pairs

Parallel pairs

Example of Trailing Pair

Minimum Distance Between Pairs

Minimum distance = minimum in-trail distance for a given lead-trail pair observed over in-trail time horizon

Average Distance Between Pairs

Average distance = average in-trail distance <u>for a given lead-trail pair</u> observed over in-trail time horizon

Standard Deviation of Separation

Standard deviation = standard deviation of in-trail distance <u>for a given</u> <u>lead-trail</u> pair observed over in-trail time horizon

Average Speed Difference

Average speed difference = average **ground** speed difference between leader and trailer <u>for a given lead-trail</u> pair observed over in-trail time horizon

Aircraft are travelling in approximately same direction, so distribution of air speed differences should be similar

Pair Counts by Wake Category

United States

Number of Pairs									
ب	Trailing aircraft								
raf		\mathbf{F}	\mathbf{E}	D	\mathbf{C}	В	\mathbf{A}		
eading aircraft	F			3					
où ez	${f E}$		10	26	1	1			
din	D	4	26	2932	92	38	1		
ea(C		2	51	53	8			
_	В		1	28	13	45	1		
	A					4	1		

Europe

Number of Pairs									
<u></u>	Trailing aircraft								
raf		\mathbf{F}	\mathbf{E}	D	\mathbf{C}	В	A		
irc	\mathbf{F}								
Leading aircraf	\mathbf{E}			1					
din	D	1	1	1645	21	25	4		
ea	\mathbf{C}			16	10	6			
_	В			40	5	81	14		
	A			3		12	14		

F: Lower small

E: Upper small

D: Large

C: Lower heavy

B: Upper heavy

A: Super

Observations

- Large-large trailing pairs most common
- No obvious difference between separation distributions for different pair classes (distributions not shown); most other pair combinations suffer from small sample sizes

Stochastic Aircraft / Wake Model

Aircraft Simulation Model

- Leading and trailing aircraft states modeled via stochastic differential equations
- Different control laws for each aircraft

Trailing aircraft: Tries to maintain the target separation

Leading aircraft: Tries to maintain its own target speed

D: Target Separation Distance

V_I

Buffer Minimum Separation Distance

Wake Region

Altitude

Along-Track Movements

Leading aircraft: Maintain target speed

$$dv_l = -\rho(v_l - \mu)dt + \sigma_l dW_t$$
Maintain target Noise

- $-v_l$: speed of leading aircraft speed
- $-\mu$: target velocity
- $-\sigma_l$: the volatility parameter
- $-\rho$: the rate of mean reversion
- $-W_t$: standard Brownian motion
- Trailing aircraft: Maintain separation with leading aircraft

$$dv_f = k_p(X_l - D - X_f)dt + k_d(v_l - v_f)dt + \sigma_f dW_t$$

$$Maintain \ target \qquad Match \ speed \ of \qquad Noise$$

$$separation \ distance \ D \qquad leading \ aircraft$$

Vertical Movements

• Both aircraft: Maintain target altitude

$$dz = -\rho_z(z - \mu_z)dt + \sigma_z dW_t$$
Maintaining target Noise
altitude

- z : altitude

 $-\mu_z$: target altitude

 $-\sigma_z$: the volatility parameter

 $-\rho_z$: the rate of mean reversion

 $-W_t$: standard Brownian motion

Along-track / Vertical Distributions

• 50,000 simulated pairs of aircraft, 30 simulated minutes for each pair

- Each point shows relative position at the end of the simulation
- Fitted probability density functions match theory

Possible to choose model parameters to yield a prespecified normal distribution

Estimating Model Parameters

- Restrict data to trailing pairs where both leading and trailing aircraft are one of:
 - Airbus: A318, A319, A320, A321
 - Boeing: B737-600, B737-700, B737-800, B737-900
- Number of trailing pairs in U.S. -1,653
- Number of trailing pairs in Europe 1,510

Estimated Model Parameters

Observable Parameter	Associated Model Parameters	Estimated Value
Average (target) separation distance	D	15.2 nm
Standard deviation of separation distance	$rac{\sigma_f}{\sqrt{2k_dk_p}}$	1.14 nm
Target speed for leading aircraft	μ	435 kts
Standard deviation of speed for leading aircraft	$\sigma_l/\sqrt{2\rho}$	19.9 kts
Standard deviation of speed for following aircraft	$\sigma_f/\sqrt{2k_d}$	19.9 kts
Standard deviation of altitude	$\sigma_z/\sqrt{2\rho_z}$	10 ft

Potential Wake Encounter Region

- Dimensions of the wake zone are approximated from APA model with selected parameters
- The region defines an area that is likely to contain the wake (potential wake encounters)

Caveats

- Lateral transport not considered
 - Assume wake zone is laterally aligned with flight path of trailing aircraft
- Results represent instances when aircraft penetrates the wake zone (area where wake is likely to be), which is not necessarily an instance of hitting the wake
- No climbing / descending scenarios

Rare-Event Splitting Technique

- Challenge: Low probability events computationally expensive to simulate
- Rare-event simulation approach: Split (clone) trajectories that get near the rare event

En-route Aircraft / Wake Model

Sensitivity: Altitude Conformance

Sensitivity: Separation Distance

Summary and Conclusions

- Developed toolset for potential en-route wake encounters
 - Stochastic aircraft model, wake zone, rare-event simulation engine
- Analysis of track data to establish baseline parameters of model
 - Stochastic distributions for separation, altitude, speed, etc.
- Simulated potential encounter probabilities are <u>very</u> <u>small</u>, but sensitive to altitude conformance
- Ongoing work: Climbing / descending aircraft