

Decision Support Capabilities for Effective Application of Collaborative Trajectory Options Programs (CTOP)

Michael Ball

Robert H Smith School of Business and Institute for System Research University of Maryland October 2018

Project Funded by NASA Ames: Metron Aviation (Bob Hoffman, PI) participation from Ohio State (Phil Smith), UC Berkeley (Mark Hansen) and U of Maryland (Mike Ball, Dave Lovell)

What is CTOP?

CTOP is a new traffic management initiative for controlling traffic through ground delays and rerouting

Traffic managers can create multiple flow constrained areas (FCAs)

In a CTOP, flight operators express operational priorities for a given flight via a TOS

RO = route option RTC = Relative trajectory cost RMNT = required min notification time TVST/ET = trajectory valid start/end time

ERTD	RO	RTC	RMNT	TVST	TVET	delay	Adi Cost	
15:00	RO1	0	-	-	-	required	0+30 = 30	
15:00	RO2	15	-	-	-	10	15+10 = 25	6
15:00	RO3	40	-	-	-	0	40+0 = 40	

2006-2010: Initial concept development by CDM group as SEVEN (System Enhancements for Versatile Electronic Negotiation)

2010-2013: Development & Deployment of Initial CTOP capability

- 2014: Deployment under TFMS
 - Regular and widespread use has been slow

- A: Use case development
- Support for FCA definition and location
- Models for FCA rate setting
- B: Support for setting CTOP start time and revision decisions
- C: Understanding airline RTC values from historical (AFP) data
- Modeling and supporting RTC decisions
- D: Identification of improved CTOP resource allocation mechanisms

A: Use Case List

- Departure management
- Single-center en route airspace management
- Multi-center en route airspace management
- Demand overage
- Airport corner post arrival management
- Integration with TBFM
- Integration of TMIs
- Concurrent CTOPs
- New York airport through-flow
- Oceanic transition airspace
- Contingency planning for facility outages
- Special Use Airspace management

Departure Management (CLT and N90) Use Cases

These two use cases apply CTOP to control:

- flow out of departure fixes at a single airport
- weather is moving across one or more departure fixes

This would be a replacement for

- Miles/minutes-in-trail (MIT/MINIT)
- Mandatory reroutes
- Manual departure reroutes due to route closures

- Use CTOP to curtail and smooth the flow of traffic into oceanic transition airspace.
- Today, there is inefficiency in sequencing aircraft for procedural separation limits just prior to entering oceanic airspace.
- CTOP can smooth out the flow of aircraft just before departing the CONUS for oceanic airspace.

UCB developed statistical models to infer airline preferences for rerouting versus ground delay based on AFP data

- Random Utility Models applied to historical data on TMIs
- Compute tradeoff between additional flight time and ground delay (marginal RTC)

Also, used probabilistic clustering to predict TOS routing options

Conclusions

• Assumptions about airline behavior are sound, but marginal RTC much higher than we expected

- Airlines may be holding out with high levels of assigned ground delays
- Gambling that their delay will be reduced, as other flights (or theirs) route out
- Since AFP is an unpredictable situation, they may "wait and see" what happens

	Mean Initial	Stdev Initial	Mean Final	Stdev Final
Stay in AFP	65	41	33	51
Route Out	17	15	25	45

• AFP data represents an imperfect sample so further investigation is warranted

Motivating example: analysis of most basic CTOP Case: single FCA + common TOS

- Single FCA
- Steady flow of more or less identical flights

Original Schedule: 1 flight / min:

SCHED	Flight #	SCHED SLOT		
1 IME	-	SLOT		
1600	I	l		
1601	2	2		
1602	3	3		
1603	4	4		
1604	5	5		
1605	6	6		
1606	7	7		
1607	8	8		
1608	9	9		
1609	10	10		
1610	11	11		
1611	12	12		
1612	13	13		
1613	14	14		
1614	15	15		
1615	16	16		
1616	17	17		
1617	18	18		

SCHED TIME	Flight #	SCHED SLOT
1600	1	1
1601	2	2
1602	3	3
1603	4	4
1604	5	5
1605	6	6
1606	7	7
1607	8	8
1608	9	9
1609	10	10
1610	11	11
1611	12	12
1612	13	13
1613	14	14
1614	15	15
1615	16	16
1616	17	17
1617	18	18

SLOT AVAIL	TIME
1	1600
	1601
3	1602
	1603
5	1604
	1605
7	1606
	1607
9	1608
	1609
11	1610
	1611
13	1612
	1613
15	1614
	1615
17	1616
	1617

CTOP slot allocation:

SLOT

1617

SCHED

1617

18

	SCHED TIME	Flight #		AVAIL	TIME	DELAY
	1600	1		1	1600	0
	1601	2			1601	
	1602	3		3	1602	1
	1603	4			1603	
Note weach $RTC =$	1604	5		5	1604	2
Note weach $KTC =$	1605	6	\sim		1605	
10, all flights (so	1606	7		7	1606	3
far) will take ground	1607	8			1607	
delay rather than	1608	9		9	1608	4
reroute	1609	10			1609	
Teroute	1610	11		11	1610	5
	1611	12			1611	
	1612	13		13	1612	6
	1613	14			1613	
	1614	15		15	1614	7
	1615	16			1615	
	1616	17	*	17	1616	8

CTOP slot allocation:

Flight 12 would incur an 11 min delay > RTC=10 → reroute

TIME	Flight #			
1609	10			
1610	11			
1611	12	$\backslash \backslash \backslash$	SLOT AVAIL	TIME
1612	13	`\ \ `	19	1618
1613	14			1619
1614	15		21	1620
1615	16			1621
1616	17		23	1622
1617	18			1623
1618	19		25	1624
1619	20			
1620	21			
1621	22			
1622	23			
1623	24			

CTOP slot allocation:

An alternative approach: if high congestion is anticipated, maintain a very short queue of flights waiting to go thru the FCA by starting to reroute flights much earlier

	SCHED TIME	Flight #	SLOT AVAIL	TIME	DELAY
	1600	1	 1	1600	0
Reroute 🗲	1601	2		1601	
" $\cos t$ " = RTC = 10	1602	3	 3	1602	0
Reroute	1603	4		1603	
" $cost$ " = $RTC = 10$	1604	5	 5	1604	0
Reroute	1605	6		1605	
" $cost$ " = RTC = 10	1606	7	 7	1606	0
Reroute	1607	8		1607	
$"aast" - \mathbf{PTC} - 10$	1608	9	 9	1608	0
$\cos t = KTC = 10$	1609	10		1609	
All rerouted flights	1610	11	11	1610	
All felouted hights	1611	12		1611	
(1/2) incur cost of 10;	1612	13	13	1612	
all other flights $(1/2)$	1613	14		1613	
incur 0 cost.	1614	15	15	1614	
In this ar w 25 flights	1615	16		1615	
In this ex w 25 flights,	1616	17	17	1616	
tot cost reduced from	1617	18		1617	
<i>195 to 120.</i>					

- Balanced Priority Resource Allocation (BPRA): Modify CTOP information and algorithms to support "short-queue" / reroute decisions
 - Airline provide flight priorities to determine, which to reroute, which to keep in queue
 - Method for insuring balance / equity among airlines
 - Dynamically start / stop

2. Apply Compression-Like procedure to enable intra- and inter- airline flight substitutions to achieve desired impact

- When as each CTOP slot assignment is made an iteration of a compression-like algorithm can be made.
- Vers 1 requires no new airline input; vers 2 achieves better benefits but requires additional airline information transfer.

Initial testing shows promise for both procedures but algorithmic enhancements and more testing required.

While this project has many different, specific components, its principal goal is to develop models and capabilities that help move CTOP to an effective tool broadly used within the NAS.