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Abstract  
The Integrated Safety Assessment Model 

(ISAM) is being developed to provide a baseline risk 
assessment for the National Airspace System and to 
evaluate safety implications of proposed changes. 
The causal risk model in ISAM is a hybrid model of 
event sequence diagrams (ESDs) and fault trees and 
represents accident and incident scenarios. ISAM 
contains several thousand parameters. This paper 
evaluates the significance of these parameters within 
the model with respect to several importance metrics 
in order to identify the most important parameters. 
The analyses are conducted for pivoting events and 
underlying fault tree events of individual ESD as well 
as across all ESDs based on both the accident 
frequency and the fatality frequency.  

Introduction 
The national air transportation system provides 

an extremely safe mode of transportation. As the 
system evolves, changes to the system – for example, 
new procedures and technologies or gradual shifts in 
traffic or aircraft equipage – have the potential to 
alter the level of safety. The Integrated Safety 
Assessment Model (ISAM) [1] is being developed by 
the FAA to provide a baseline risk assessment for the 
National Airspace System and to evaluate safety 
implications of proposed changes, such as NextGen 
operational improvements.  

The model architecture of ISAM includes a set 
of event-sequence diagrams (ESDs) and supporting 
fault trees. Each event-sequence diagram represents a 
different initiating event – for example, an incorrect 
configuration during take-off – and provides an 
estimate for the risk related to the initiating event 
based on enumerating a sequence of pivoting events 
that may subsequently occur. A pivoting event is a 
downstream branching point in the tree – for 
example, whether or not the flight crew rejects the 
take-off. Each path through the tree then terminates at 
an end event, representing either a safe outcome or 
some type of incident or accident, such as a runway 
excursion. 

ISAM contains thousands of parameters 
representing probabilities within the event trees and 
fault trees. These parameters must be populated with 
numerical values. The objective of this paper is to 
conduct a sensitivity analysis of parameters within 
ISAM in order to identify the most important 
parameters. Such an analysis can be used to guide 
future data collection and research efforts – for 
example, to prioritize efforts on accurately 
quantifying parameters that have a significant impact 
on the final safety outputs. The analysis in this paper 
considers multiple importance metrics to identify 
parameters that consistently rate as having a high 
impact across all metrics. A common-event analysis 
is also conducted across all event sequences 
simultaneously to identify parameters that have the 
most impact on the overall safety. 

The rest of this paper is organized as follows: 
Further details of ISAM are described in the next 
section. Then the importance measures and analysis 
methodology are described. Results are given first for 
individual event-sequence diagrams. Then results are 
given across the ISAM model as a whole. Finally, 
results are given to identify the most important 
parameters within the underlying fault trees. The last 
section provides conclusions. 

Integrated Safety Assessment Model  
The Integrated Safety Assessment Model [1] 

provides a baseline estimate of risk for the National 
Airspace System using a causal risk model. ISAM 
also has several models that are combined to develop 
a future risk forecast. These include a program model 
of NextGen improvements and their impacts, several 
future traffic forecasts, a model of hazards and their 
relationships to initiating events in the ISAM fault 
trees, and an influence model that links those hazards 
to historical risks and can be used to estimate the 
impact of future operational changes on risk. The 
causal model of ISAM is structurally based on the 
Causal model for Air Transportation Safety [2,3] and 
the Integrated Risk Picture [4], but is modified and 
adapted to represent scenarios in the United States. 
Some preliminary versions of the ESDs used in 
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the case that the probability of a single event i is 
changed from its baseline value to zero and one 
respectively. 

The Fussell-Vesely (FV) metric measures the 
percent change in accident frequency when the 
probability of a particular event becomes zero. The 
Risk-Achievement-Worth (RAW) metric compares 
the accident frequency when one of the events is set 
to 1 (typically a failed condition) to the accident 
frequency in the baseline case. Lastly, the Birnbaum-
Importance (BI) metric measures the difference in the 
accident frequencies between the cases when a single 
probability is set to 1 and when it is set to 0.  

Table 2. Importance Measures 

Measure Principle 

Fussell-Vesely (FV) 
ܲሺܾܽ݁ݏሻ െ ܲሺऀࣻ ൌ 0ሻ

ܲሺܾܽ݁ݏሻ
 

Risk Achievement Worth 
(RAW) 

ܲሺऀࣻ ൌ 1ሻ

ܲሺܾܽ݁ݏሻ
 

Birnbaum Importance (BI) ܲሺऀࣻ ൌ 1ሻ െ ܲሺऀࣻ ൌ 0ሻ 

We apply the importance measures in Table 2 to 
each of the pivoting events in an ESD (not including 
the initiating event), and then rank the pivoting 
events for each ESD in order of significance. We 
apply the same method to the fault trees to rank the 
importance of fault-tree events. Fault trees are 
located underneath each pivoting event and 
underneath each initiating event.   

The importance measures explained so far are 
highly dependent on the baseline probabilities of 
events inferred by historical accident data, which 
may not be perfectly representative of the true 
accident frequencies, since accidents in air 
transportation are very rare events. In particular, 
some of the end-event frequencies are populated with 
zero values, since no accidents have been historically 
observed for some specific paths in the event trees. 
But this does not mean that the true probabilities are 
zero – that is, such event sequences might still occur 
in the future.  

Factorial design can be used to generate an 
importance measure that is less sensitive to the 
baseline values. Factorial design analyzes the effects 
of multiple factors on the responses, or dependent 
variables. Each factor usually has two levels, a high 

value and a low value. In a full-factorial design, an 
experiment is conducted for all 2n combinations of 
levels that each factor can have, where n is the 
number of factors or parameters. We perform the 
factorial design method on each ESD in ISAM for the 
purpose of finding events that have larger main 
effects on accident scenarios than others. Some 
recent studies to evaluate the sensitivity of 
parameters within safety models in air transportation 
using factorial design are [12], [13]. The detailed 
method is as follows: 

 Define low and high probabilities for each 
event (e.g., in this paper, the low value is 0 
and the high value is 1). 

 Compute the accident frequency for all 
combinations (2n) of event probabilities. 

 Compute the main effect of each pivoting 
event by subtracting the average accident 
frequency for an event with its low 
probability from the average accident 
frequency for an event with its high 
probability. 

 Rank the effects of events in each ESD. 

This method is applied to the pivoting events in 
the ESDs, but not to the underlying fault trees, since 
the number of combinations to be analyzed increases 
exponentially with the number of factors. There are 
many more parameters in the fault trees than the 
event trees. While the results of this approach do not 
depend on the baseline values, the results do depend 
on the particular high and low values chosen in the 
first step. 

Results on Individual ESDs  

Accident Frequency Based Results 
Importance measure and factorial design 

methods are conducted for all 35 ESDs in ISAM, one 
at a time. The full results for one sample ESD (Figure 
3) are presented in this section, and then overall 
results across all ESDs are summarized. The first 
ESD (US-01) involves an aircraft system failure 
during take-off as the initiating event.  

First, the importance measures are computed for 
each pivoting event in each ESD, and the pivoting 
events are ranked based on each measure. Figure 4 
shows ranks of the pivoting events in the sample ESD 
based on the importance measures and factorial 
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Results of Individual ESD  
An importance-measure analysis is conducted 

for all fault tree events in each individual ESD. The 
number of fault-tree events under an initiating event 
or a pivoting event varies from a few to more than 
one hundred. Due to the structure of the fault trees 
and the baseline probabilities, many of the fault tree 
events in an ESD have the same computed 
importance measure, so an explicit ranking of fault 
tree events is not very useful. Instead, we present 
high level findings.  

 Fault-tree events under the initiating event 
tend to be more significant, provided the 
accident frequency of the ESD is non-zero. 

 Most of the fault trees are composed of 
“or” gates. But if there is an “and” gate in 
a fault tree, events below the “and” gate 
are much less significant. This is because a 
failure of the “and” gate only occurs if 
every event underneath it fails, so each 
sub-event is less important.  

 Importance measures are the same for fault 
tree events under a pivoting event that has 
a zero probability. Also, if the accident 
frequency for an ESD is zero, fault-tree 
events under the initiating event are all 
zero. 

Results across ESDs 
A similar analysis of common events is 

conducted for fault-tree events across all ESDs in 
ISAM. As discussed previously, pivoting events with 
the same label have the same underlying fault tree. 
Even though there are 3,454 fault-tree event nodes in 
ISAM, there are only 226 unique labels for these 
events. 133 of these labels appear more than once, 
while the rest are unique. Table 6 shows the 12 most 
frequently appearing labels. 

Table 7 shows the top ten fault-tree events as 
identified by the sensitivity analysis. The event 
‘Avoidance essential’ is the most significant event. 
This node describes a situation where corrective 
action must be taken to prevent an accident – e.g., 
two aircraft are on course for a collision, so some 
type of avoidance is necessary to avoid the accident.  
The interpretation of the sensitivity value is that if the 
failure probability of every node in ISAM with this 
label is increased by 1%, then the overall accident 

frequency increases by 0.622%. Most of the 
significant fault tree events appear a relatively small 
number of times throughout all ESDs. 

Table 6. Common Labels of Fault Tree Events 

Label of Fault Tree Events # of Obs. 

No warning system in place-flight crew 200 

Warning system fails to give warning-flight 
crew 

200 

Warning system gives erroneous warning-
flight crew 

200 

Inadequate flight-crew procedures 197 

Ineffective flight-crew cockpit resource 
management 

197 

Flight-crew technical equipment failure 196 

Other system provides incorrect 
information-flight crew 

181 

Poor manual flight control 156 

Poor automated systems management 155 

Aircraft state inhibiting ability to maintain 
control 

77 

Environmental factors inhibiting ability to 
maintain control 

76 

Maintenance conducted incorrectly 56 

Table 7. Results of Fault Tree Event Sensitivity  

Label of Fault Tree Events 
Sensi-
tivity 

# of 
Obs. 

Avoidance essential 0.622% 4 

Conflict in non-movement area 0.412% 1 

Avoidance action creates new conflict 0.211% 4 

Communications technical equipment 
failure 

0.112% 33 

Incorrect flight crew/driver response to 
controller action 

0.111% 2 

Other aircraft deviation 0.111% 4 

Situation exceeds capability to correct 0.107% 11 

Flight crew/driver fails to take correct 
avoidance action 

0.106% 2 

Flight crew/driver misjudges avoidance 
action 

0.106% 2 

Flight crew fails to take correct 
avoidance action 

0.106% 2 



Conclusions 
This paper presented multiple metrics for 

sensitivity analysis of event sequence diagrams for 
aircraft accident scenarios, which are developed in 
ISAM. The sensitivity analyses are conducted for 
pivoting events and underlying fault tree events of 
individual ESD as well as across 35 ESDs based on 
both accident frequency and fatality frequency to 
identify the most important events. For individual 
ESD analysis, three importance measures and 
factorial design analysis are performed to rank 
pivoting events and fault tree events separately in 
each ESD, while the common-event sensitivity is 
measured across all 35 ESDs. 

For individual ESDs, the accident-based analysis 
highlights the significance of the ESD structure. 
ESDs with the same structure tend to have the same 
pivoting events that are identified as most important, 
even though the numerical values within the trees are 
different. The fatality-based analysis yields a similar 
result, but the commonality among same-structure 
ESDs is not as pronounced. The higher fidelity of the 
data (quantifying different types of accidents by their 
fatality rates) provides more precision in identifying 
important pivoting events.  

For the sensitivity analysis across all ESDs the 
assumption that events having the same label are 
really the same was made even though the 
interpretations of events may vary in different places 
of ISAM. Events may be evaluated as important for a 
variety of reasons: They may create a significant 
effect within an important ESD (i.e. one that 
contributes significantly to the total fatality/accident 
metric), or they may appear multiple times 
throughout ISAM. A relationship between the 
number of observations and the importance of an 
event is not clearly detected. Many important pivotal 
events in the single-ESD analysis are also significant 
in the common event analysis – for example, ‘Air 
traffic control does not resolve the conflict’, ‘Flight 
crew does not maintain control’, ‘Sufficient braking 
not accomplished’, ‘Insufficient runway length 
remaining.’ To a lesser extent, a similar observation 
is made for fault tree events. Top events for fault 
trees include ‘Communications technical equipment 
failure’, ‘Other aircraft deviation’, and ‘Situation 
exceeds capability to correct’. For pivotal events, the 
top 10 list is similar using accident and fatality 

metrics, but this was not observed for the fault-tree 
events. 
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Appendix I 
35 Event Sequence Diagrams in ISAM 

ESD Initiating Event 

US 01 Aircraft system failure during take-off 

US 02 Air-traffic-control event during take-off 

US 03 
Aircraft directional control by flight crew inappropriate 
during take-off 

US 04 
Aircraft directional control related system failure during 
take-off 

US 05 Incorrect configuration during take-off 

US 06 Aircraft takes off with contaminated flight surface 

US 08 Aircraft encounters wind shear after rotation 

US 09 Single engine failure during take off 

US 10 Pitch control problem during take-off 

US 11 Fire onboard aircraft 

US 12 Flight crew member spatially disoriented 

US 13 Flight control system failure 

US 14 Flight crew member incapacitation 

US 15 Ice accretion on aircraft in flight 

US 16 Airspeed, altitude or attitude display failure 

US 17 Aircraft encounters adverse weather 

US 18 Single engine failure in flight 

US 19 Unstable approach 

US 21
Aircraft weight and balance outside limits during 
approach 

US 23
Aircraft encounters wind shear during approach or 
landing 

US 25
Aircraft handling by flight crew inappropriate during 
flare 

US 26
Aircraft handling by flight crew inappropriate during 
landing roll  

US 27
Aircraft directional control related systems failure during 
landing roll 

US 31 Aircraft are positioned on collision course in flight 

US 32 Runway incursion involving a conflict 

US 33 Cracks in aircraft pressure boundary 

US 35 Conflict with terrain or obstacle imminent 

US 36 Conflict on taxiway or apron 

US 37 Wake vortex encounter 

US 38 Loss of control due to poor airmanship 

US 39
Runway incursion involving incorrect presence of single 
aircraft for takeoff 

US 40 Air-traffic-control event during landing 

US 41 Taking off from a taxiway 

US 42 Landing on a taxiway 

US 43 Landing on the wrong runway 
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