FAA NEXTOR NAS Performance Workshop, Asilomar, 4/14/2009

Analyzing Aircraft Taxi Times at Airports: Comparison and Decomposition

Yu Zhang, Arjun Chauhan University of South Florida

BTS Report (1)

BTS Report (2)

Roadmap

- Review and compare taxiing time models
 - Existing model
 - Alternative model
- Decompose taxiing time
 - Taxi time according to scheduling
 - Excess taxi time
- Work in-progress
 - Integrated Model for Departure Sequence and Gate Push-back Times
 - Impact of Airport Delay on National System

Causal Factors Affecting Taxi Times

- Arrival and departure demands
- Arrival and departure queue lengths
- Runway configuration
- Airline/terminal
- Weather and upstream and downstream restrictions
- Other factors

Exiting Model

- Group: Origin-Destination, Carrier, Season
- Excluding the upper 25% taxiing time in estimation
- Departure queue length: the number of aircraft ahead of the flight at the queue entry time (gate out time)
- Arrival queue length: the number of aircraft ahead of the flight at the queue entry time (wheel-on time).

Exiting Model

- Group: Origin-Destination, Carrier, Season
- Excluding the upper 25% taxiing time in estimation
- Departure queue length: the number of aircraft ahead of the flight at the queue entry time (gate out time)
- Arrival queue length: the number of aircraft ahead of the flight at the queue entry time (wheel-on time).

Regression model:

$$y_o = a \cdot x_o + b \cdot x_i + c$$
$$y_i = a' \cdot x_o + b' \cdot x_i + c'$$

Unimpeded taxi time:

$$y_o^* = a \cdot 1 + b \cdot 0 + c$$
$$y_i^* = a' \cdot 0 + b' \cdot 1 + c'$$

Aircraft Over Passing¹

Alternative Model

- Group: Origin-Destination, Carrier, Season
- Excluding the upper 25% taxiing time in estimation
- Departure queue length: <u>the</u> <u>number of takeoffs that took</u> <u>place ahead of the reference</u> <u>aircraft during its taxi out.</u>
- Arrival queue length: <u>the</u> <u>number of aircraft that gated</u> <u>in ahead of the reference</u> <u>aircraft during its taxi in.</u>

Alternative Model

- Group: Origin-Destination, Carrier, Season
- Excluding the upper 25% taxiing time in estimation
- Departure queue length: <u>the</u> <u>number of takeoffs that took</u> <u>place ahead of the reference</u> <u>aircraft during its taxi out.</u>
- Arrival queue length: <u>the</u> <u>number of aircraft that gated</u> <u>in ahead of the reference</u> <u>aircraft during its taxi in.</u>

Regression model:

$$T_o = \alpha \cdot q_o + \beta \cdot q_i + \gamma$$
$$T_i = \alpha' \cdot q_o + \beta' \cdot q_i + \gamma'$$

Unimpeded taxi time:

$$T_o^* = \alpha \cdot 1 + \beta \cdot 0 + \gamma$$
$$T_i^* = \alpha' \cdot 0 + \beta' \cdot 1 + \gamma'$$

Comparison of two Models

R-square Statistics	Existing Model	Alternative Model
Mean	0.32	0.62
Standard Error	0.01	0.01
Median	0.32	0.64
Mode	0.36	0.68
Standard Deviation	0.11	0.12
Sample Variance	0.01	0.02
Kurtosis	0.83	4.41
Skewness	0.33	-1.53
Range	0.79	0.87
Minimum	0.00	0.01
Maximum	0.79	0.88
Group	439	439 11

Decompose Taxi time

- Taxi time with scheduled departure and arrival demands assuming regular operational environment
- Taxi time affected by other factors

Iterative Algorithm for Decomposing Taxi Times

1. Initialization :

$$x_o^{(0)} \leftarrow 0 \text{ and } x_i^{(0)} \leftarrow 0$$

iteration count $n \leftarrow 1$

convergence parameter $\varepsilon = 0.005$

2. Given estimated coefficients from regression model, calculate

$$t_{o}^{(n)} = a \cdot x_{o}^{(n-1)} + b \cdot x_{i}^{(n-1)} + c$$

 $t_i^{(n)} = a' \cdot x_o^{(n-1)} + b' \cdot x_i^{(n-1)} + c'$

3. Given scheduled departure time *d* and scheduled gate in time g_i calculate gate out time $g_o^{(n)} = d - t_o^{(n)}$ and arrival time $a^{(n)} = g_i - t_i^{(n)}$ 4. Calculate departure and arrival queue lengths $x_o^{(n)}$ and $x_i^{(n)}$, assuming no overpassing 5. Given estimated coefficients from regression model, calculate $t_{a}^{(n+1)} = a \cdot x_{a}^{(n)} + b \cdot x_{i}^{(n)} + c$ $t_i^{(n+1)} = a' \cdot x_o^{(n)} + b' \cdot x_i^{(n)} + c'$ 6. Convergence test : If $\sum_{s} \left(t_i^{(n+1)} - t_i^{(n)} \right) / F_a < \varepsilon$ and $\sum_{i} \left(t_o^{(n+1)} - t_o^{(n)} \right) / F_d < \varepsilon$ stop else n \leftarrow n + 1 and go to step 3 12

Numerical Example (Taxi-in)

	Unimpeded_TI	Nominal_TI	Actual_TI
Mean	5.39	6.74	7.50
Standard Error	0.04	0.05	0.21
Median	5.30	6.18	7.00
Mode	5.30	3.84	7.00
Standard Deviation	0.92	1.05	4.59
Sample Variance	0.84	1.10	21.08
Kurtosis	1.20	-0.87	25.82
Skewness	0.89	-0.13	3.84
Range	4.50	5.42	52.00
Minimum	4.00	3.84	1.00
Maximum	8.50	9.26	53.00
Sum	2467.00	2752.56	3433.00
Count	458	458	458

Taxi-in (Mean by Hour)

Taxi-in Times

Taxi-in (Mean and Range by Hour)

Taxi-in Times

Numerical Example (Taxi-out)

	Unimpeded_TO	Nominal_TO	Actual_TO
Mean	12.60	20.29	37.56
Standard Error	0.07	0.12	1.56
Median	12.4	19.84	25
Mode	12.4	15.14	23
Standard Deviation	1.47	2.51	33.63
Sample Variance	2.16	6.29	1130.99
Kurtosis	-0.91	-0.13	7.52
Skewness	0.40	0.06	2.64
Range	5.1	13.55	195
Minimum	10.1	14.24	9
Maximum	15.2	27.79	204
Sum	5832.8	9333.19	17391
Count	463	463	463

Taxi-out (Mean by Hour)

Taxi-out Times

Taxi-out (Mean and Range by Hour)

Taxi-out Times

What is Next?

- Introducing quadratic components into the alternative models
- Analyze the effectiveness of taxi time models for a large set of airports
- Test the effect of different scheduling with the same daily total demand
- Investigate the effect of having more (double? Triple?) scheduled flights

Work in Progress (1)

- Integrated model for departure sequence and gate push-back time
 - Existing literature: Departure sequence with holding point constraint
 - Existing literature: Gate push-back time given departure sequence from SMS

Multiple Objective Optimization

- Maximizing operational throughput Minimizing late take-off penalty: pushing flight to take off in earlier time periods by penalizing takeoffs in later time periods heavier
- Minimizing taxiing time, including transverse time and taxiing delay
- Minimizing the penalty of deviating from scheduled departure time

Work in Progress (2)

- Impact of Airport Delay on National System
 - Analyze the delay trend at OEP airports
 - Investigate the change of delay concentration with topology tools
 - Quantify the impact of a single airport or regional airport system to NAS

Thank you !

Yu Zhang yuzhang@eng.usf.edu