

Modeling Flight Delays and Cancellations at the National, Regional and Airport Levels in the United States

Banavar Sridhar Yao Wang Alex Klein Richard Jehlen

National Airspace System Performance Workshop Asilomar, CA April 13-16, 2009

Motivation

- Weather is the major cause of delay in the National Airspace System (NAS)
- Four possible scenarios

	Poor Weather Forecast	Accurate Weather Forecast	
Poor operational response	х	Х	
Proper operational response	Х	Best outcome	

 Relate delay, cancellations and other NAS performance metrics to the weather conditions to improve Traffic Flow Management

Results

- Developed flight delay and cancellation models at the national, regional and airport levels
- Expected number of aircraft impacted by weather good proxy for delay

- Different models for summer and winter
- All metrics can be estimated to same level of accuracy
- FAA (ASPM and OPSNET) databases are complementary
- Neural Network models perform slightly better

Outline

NASA

- Objectives
- Databases
- Airspace Performance Metrics
- Modeling/Estimation of Metrics
 - Regression Models
 - Neural Network Models
- Results
- Conclusions

Objectives

- Develop NAS performance metric models based on FAA operational traffic databases
 - Different metrics
 - Impact of databases
 - Approach
 - Linear regression models
 - Neural networks models

Databases

- FAA Operations Network (OPSNET)
 - Data available from 1990
 - Daily values
 - 45 airports
 - Total national delay
- Aviation System Performance Metrics (ASPM)
 - Data available from 2000
 - Every 15 minutes
 - 75 airports
 - Total OAG-based and flight-plan based arrival delays, EDCT hold minutes, airborne delay, flight cancellations
- Paper uses data from 2005-2008

NAS Performance Metrics

7

Aircraft positions

Severe weather

Weather Impacted Traffic Index (WITI)

- Grid-based WITI
- National Weather Index (NWX)
 - En-route WITI (E-WITI), representing convective weather impact on major flows between city pairs
 - Terminal WITI (T-WITI), representing weather impact on major airports
 - Airport Queuing Delay (Q-Delay), representing surface and terminal-airspace weather impact on major airports in a nonlinear fashion

Modeling/Estimation of Metrics

- Number of aircraft affected by weather (X)
- Number of aircraft affected by weather in each Center (X_p)
- Performance metric ($\boldsymbol{\delta}$)
- Models
 - Linear Regression (LR) $\delta = \alpha X + \beta$
 - Multiple Linear
 Regression (MLR)
 - Neural Networks
 - Dynamic Models

$$\delta = \sum_{p=1}^{\infty} \alpha_p X_p + \beta_p$$

$$\delta = f(X_p)$$

$$\delta(t) = f(X_p(t-k), \dots, X_p(t-1), X_p(t), X_p(t+1), \dots, X_p(t+r))$$

20

Performance of Regression Models

11

Performance of Regression Models

Typeof Metric	Correlation	RootMean	Maximum
	Coefficient	Squared Error	Absolute Error
OPSNET delay (LR)	0.71	32,70 minutes	26,600 inutes
OPSNET delay (MLR)	0.77	31,20 minutes	24,500 minutes
Scheduleddelay	0.75	99,200 minutes	74,300 minutes
Flight Cancellations	0.77	131flights	94flights

- Regression models perform a good job of accounting for the impact of weather on delays and flight cancellations
- For systems with demandcapacity imbalance, growth in delay is non-linear

Nonlinear Models

Type of Model	r	RMSE	MAE
LR	.71	32,700 minutes	26,600 minutes
MLR	.77	31,200 minutes	24,500 minutes
Neural Network	.80	30,000 minutes	23,300 minutes
Neural Network (5C)	.80	29,100 minutes	22,000 minutes

Table 4.1 Performance of OPSNET national delay models

Table 4.3 Performance of ASPM flight cancellation models

Type of Model	r	RMSE	MAE
LR	.73	146 flights	106 flights
MLR	.77	131 flights	94 flights
Neural Network	.79	131 flights	93 flights
Neural Network (5C)	.79	139 flights	97 flights

• Neural Network models perform slightly better

Table 7. Correlation between performance metrics and WITI definition

	Airport	OPSNET	Flight-plan	Schedule	Flight
	Delay	Delay	Delay	Delay	Cancellation
E-WITI (LR)	.77	.70	.73	.76	.68
Grid WITI (LR)	.76	.72	.76	.76	.71
NWX (LR)	.84	.80	.84	.84	.74
E-WITI (MLR)	.80	.75	.78	.80	.78
Grid WITI (MLR)	.83	.80	.82	.83	.80
NWX (MLR)	.88	.84	.88	.88	.82

- Models using NWX perform slightly better
- Difference not significant while using MLR or NN

Table 6. Seasonal Performance of national delay models

Type of Model	Summer Correlation		Winter correlation	
	Training	Test	Training	Test
MLR	.85	.75	.74	.71
Neural Network	.85	.76	.75	.72

- Higher correlation during summer
- Lower correlation in winter may be due to higher number of cancellations on days with heavy snow, very low ceilings/visibility

Airport delay models using Regression analysis

• 34 major airports on the OEP-list

Airport	γlr	γmlr	γ _{MLR} /γ _{LR} - 1
ORD	0.743	0.803	0.08
ATL	0.752	0.777	0.03
EWR	0.640	0.725	0.13
PHL	0.764	0.805	0.06
DFW	0.577	0.646	0.12
JFK	0.618	0.670	0.08
LGA	0.685	0.723	0.06
LAX	0.195	0.496	1.54
IAH	0.684	0.725	0.06
DEN	0.550	0.664	0.21

- Good delay estimates for ORD, ATL,...
- Delay at ten airports in Eastern U.S not influenced by NWX in the neighboring Centers

Behavior of airport models

Table 10. Behavior of airport delay models (Training 2005-2007; Testing 2008)

Airport	Training γ_{MLR}	Testing γ_{MLR}	Training γ_{NN}	Testing γ_{NN}
ORD	.80	.79	.83	.80
ATL	.79	.72	.80	.72
EWR	.74	.64	.76	.68
PHL	.81	.78	.83	.80
DFW	.65	.60	.69	.63
JFK	.67	.67	.72	.68
LGA	.74	.64	.77	.67
LAX	.54	.34	.55	.35
IAH	.73	.72	.74	.72
DEN	.66	.68	.67	.68

Default Customer View

APF Dashboard

For Wednesday, August 13, 2008

Welcome Joe Use **Customer View** ATO View Today is Thursday, A Print | Help | Log Out Custom NAS Service Area ARTCC Airport Days 1 3 8 30

WITI Last 8 Days 6000

OPSNET Delays Last 8 Days 2000 1800 1600 1400 1200 1000 800 600 400 200 Vol Tern Vol Center Equip Equip Other Non-OEP 35

Holding Minutes Last 8 Days 12000 10000 8000 6000 4000 2000 0 < 100nm Actual < Rate</p>

Concluding Remarks

- Estimation/Modeling of performance metrics resulting from the use the two databases are comparable
- For all metrics, neural networks produce higher correlation and reduced errors than regression methods
- Different methods of reducing neural network complexity produce similar results