

MIT International Center for Air Transportation

Emerging Considerations for NEXTGEN

Prof. R. John Hansman

Director, MIT International Center for Air Transportation

rjhans@mit.edu

Model of System Transition Adaptation to Change Drivers

Model developed by Alexandra Mozdzanowska

Historical and Emerging Drivers

Passenger Traffic Trends (RPK) by World Region

Data source: ICAO, scheduled services of commercial air carriers (through 2006), IATA annual traffic growth data for year 2007 (Jan-Oct)

US Flight Delays

from 1995 to 2008

Historical and Emerging Drivers

US Flight Delays

from 1995 to 2008

NextGen Integrated Plan

Dec 2004

Figure 1-2. Planning for a Range of Futures

Source: NextGen Conops V 2.0

Total Combined Aircraft Operations at Airports with FAA and Contract Traffic Control Service (FAA 2009-2025)

Data sources: BTS Form 41 US Domestic for historical data from 1990-2008, FAA Forecast 2009-2025 available at:

http://www.faa.gov/data research/aviation/aerospace forecasts/2009-2025/,

Congestion Focused at Key Points

New York Airport Flight Delays* from 1995 to 2007

* Note: 12 month moving average

Historical and Emerging Drivers

Fuel Price Shock Cost Uncertainty

Data sources: ATA Fuel Cost and Consumption (oil data through Aug 2008, jet fuel data through Aug 2008) – Data for Oct. 2008 – market price for Oct. 28th 08|4

Historical and Emerging Drivers

Economic Shocks Demand Uncertainty

U.S. Airlines Net Profit Best Fit of Undamped Oscillation Cycle Period = 11.3 yr

Data source: ATA - available at: <u>www.airlines.org</u> & Airline Quarterly Reports (Net Profits and Losses Exclude Special Items)

*Note: Airlines; American Airlines, United Air Lines, Delta Air Lines, Northwest Airlines, Continental Airlines, US Airways, Southwest Airlines, JetBlue Airways, Alaska Airlines,

Model of System Transition Adaptation to Change Drivers

Model developed by Alexandra Mozdzanowska

Historical and Emerging Drivers

Emissions

Greenhouse Gas Emissions

Pressure to reduce emissions

- Global warming problem intensifies
- Political pressure to "go green"
- Future restrictions on carbon and NOx emissions
- Increase in "effective" cost of fuel
- Obama Target: Carbon emissions to 80% below 1990 levels by 2050

Challenges faced

- Other transport modes can transition more easily to lower carbon options
- Aviation experiences a relative increase in emissions
- Increased pressure on aviation to reduce emissions

www.ebaumsworld.com

How Efficient are Current Operations?

PFEI = Fuel Energy Consumed/(Payload x Great Circle Distance)

Modeling Strategies for Reducing CO2 Emissions

Architecture of the System Dynamics Model* Scenarios & Assumptions*

Policy	Scenario	Quantified Effect
Technological Efficiency Improvements	Baseline	1% efficiency improvement per annum (p.a.)
	Moderate	2.5 % p.a
	Aggressive	3,5 % p.a. (2008 to 2015) & 0.6% p.a. to 2024
Operational Efficiency	Baseline	0%
Improvements	Moderate	6%
	Aggressive	12%
Use of Alternative Fuels (i.e. biofuels: 2nd gen. starting	Baseline	0% (share of total fuel used by volume)
2010 and 3rd gen. starting	Moderate	1 % p.a.
2013)	Aggressive	2 % p.a.
Demand Shift	Baseline	0%
(flights below 1000 miles)	Moderate	30%
	Aggressive	60%
Carbon Pricing	Baseline	\$ 0 / metric ton
	Moderate	\$50 / metric ton
	Aggressive	\$200 / metric ton

* Source: Sgouridis S., Bonnefoy P. and Hansman R. J., "Air Transportation in a Carbon Constrained World: Long-term Dynamics of Policies and Strategies for Mitigating the Carbon Footprint of Commercial Aviation", to be submitted to Transport Research Part A., Feb. 2009.

Carbon Emissions under Different Carbon Management Scenarios

 Even with aggressive carbon management carbon emissions will increase

* Source: Sgouridis S., Bonnetoy P. and Hansman H. J., "Air Transportation in a Carbon Constrained World: Long-term Dynamics of Policies and Strategies for Mitigating the Carbon Footprint of Commercial Aviation", to be submitted to Transport Research Part A., Feb. 2009.

Time Constants for Implementation

Technology Example: Jet Engine

Commercial Jet Aircraft in the United States from 1956 to 1977

Procedure Example: RVSM

Data sources: [Commercial Jet Aircraft: ATA 1956-1977], [RVSM: FAA 2007, ICAO 2008]

Estimated Time Constant and Readiness of Proposed CO₂ Mitigation Measures

Data sources: Based on literature review of 49 mitigating measures covering 43 literature references (available from authors upon request)

Estimated Time Constant and Readiness of Proposed CO₂ Mitigation Measures

Data sources: Based on literature review of 49 mitigating measures covering 43 literature references (available from authors upon request)

Opportunities to Reduce Taxi Time and Surface Emissions Outgrowth of NASA Departure Planner Work

[Simaiakis and Balakrishnan, 2008]

Proposed Demonstration of Surface Movement Optimization

• Evaluating Potential Sites

Taxi Fuel Burn Performance

Emerging Implementation Issues

User Benefits Dependent Upon Approved Applications and Operational Capabilities

Disaggregate benefit/cost approach adapted from Marias and Weigel

Safety Management System SMS Challenges

- Target risk classified by ATO Safety Management System standards
 - Hazardous assumption & 10⁻⁷ assumption

Simplified Air/Ground Operational Capability Process

Operational Approval Risks in NextGen Operational Improvements

NextGen OIs analyzed from Integrated Work Plan (2008)

based on OI Descriptions in Appendix I

Preliminary categorization of operational approval risk

Code		Definition & Basis
NA	\bigcirc	No operational approval required Non-operational or process improvements (e.g. scheduling, security, environment, SMS, etc.)
Green (G)	\bigcirc	Minimal risk of operational approval No significant safety impact or depends on approved capabilities or operations already approved
Green/Yellow (GY)	\bigcirc	Minor risk of operational approval Similar application/operation already approved, or minor safety impacts
Yellow (Y)	\bigcirc	Major risk of operational approval Large changes, but limited to one domain (e.g. airborne, ATC, etc.) and hazardous or major safety consequences
Red (R)		Significant risk of operational approval Large amount of analysis required, limited operational experience with concept, or significant change in roles (human/automation)

Preliminary OI Analysis (1)

303	TMI with Flight-Specific Trajectories	R
304	Flexible Entry Times for Oceanic Tracks	G
305	Continuous Flight Day Evaluation	G
306	Provide Interactive Flight Planning from Anywhere	G
307	Integrated Arrival/Departure Airspace Management	GY
309	Use Optimized Profile Descent	GY
310	Improved GA Access to Traverse Terminal Areas	G
311	Increased Capacity and Efficiency Using RNAV and RNP	G
316	Enhanced Visual Separation for Successive Approaches	R
317	Near Zero Ceiling/Visibility Airport Access	Y
318	Arrival Time-Based Metering - Controller Advisories	G
319	Time-Based Metering into En Route Streams	G
320	Initial Surface Traffic Management	G
321	Enhanced Surface Traffic Operations	Y
322	Low-Visibility Surface Operations	R
325	Time-Based Metering Using RNP and RNAV Route Assignments	G

326	Airborne Merging and Spacing - Single Runway	GY
327	Surface Management - Arrivals/Winter Ops/Runway Configuration	G
329	Airborne Merging and Spacing with OPD	Y
330	Time-Based and Metered Routes with OPD	Y
331	Integrated Arrival/Departure and Surface Operations	G
332	Ground-Based and On-Board Runway Incursion Alerting	Y
333	Improved Operations to Closely Spaced Parallel Runways	Y
334	Independent Converging Approaches in IMC	Y
337	Flow Corridors - Level 1 Static	Y
338	Efficient Metroplex Merging and Spacing	GY
339	Integrated Arrival/Departure and Surface Traffic Management for Metroplex	G
340	Near-Zero-Visibility Surface Operations	Y
341	Limited Simultaneous Runway Occupancy	Y
343	Reduced Separation - High Density En Route, 3-mile	R
344	Reduced Oceanic Separation - 30 Miles for Pair-Wise Maneuvers	R
346	Improved Management of Airspace for Special Use	G

Preliminary OI Analysis (2)

347	Air Traffic Control Surveillance Service in	R
240	Reduce Separation - High Density	_
348	Terminal, Less Than 3-miles	R
349	Automation Support for Mixed	G
	Environments	Ŭ
350	Flexible Routing	GY
351	Flexible Airspace Management	GY
352	Automated Clearance Delivery and	V
552	Frequency Changes	
252	Reduced Oceanic Separation - Altitude	CV
353	Change Pair-Wise Maneuvers	GI
254	Reduced Oceanic Separation - Co-	V
554	Altitude Pair-Wise Maneuvers	T
255	Delegated Responsibility for Horizontal	Р
355	Separation	ĸ
256	Delegated Separation - Pair-Wise	_
356	Maneuvers	ĸ
358	Trajectory Flight Data Management	Y
359	Self-Separation Airspace - Oceanic	R
360	Automation-Assisted Trajectory	V
	Negotiation	r
361	Resource Planning	G
362	Self-Separation Airspace Operations	R
262	Delegated Separation - Complex	P
303	Procedures	ĸ

365	Advanced Management of Airspace for Special Use	G	
366	Dynamic Airspace Reclassification		
368	Flow Corridors - Level 2 Dynamic		
369	Automated Negotiation/Separation Management		
370	Trajectory-Based Management - Full Gate-To-Gate		
381	GBAS Precision Approaches	Y	
400	Wake Turbulence Mitigation: Departures - Wind-Based Wake Procedures	Y	
401	Wake Turbulence Mitigation: Arrivals - Wind-Based Wake Procedures	Y	
402	Wake Turbulence Mitigation: Departures - Dynamic Wind Procedures		
403	Wake Turbulence Mitigation: Arrivals - Dynamic Wind Procedures	Y	
406	NAS Wide Sector Demand Prediction and Resource Planning		
408	Provide Full Flight Plan Constraint Evaluation with Feedback	G	
409	Net-Centric Virtual Facility	R	
410	Automated Virtual Towers	R	
2010	Net-Enabled Common Weather Information Infrastructure	GY	
2020	Net-Enabled Common Weather Information - Level 1 Initial Capability		
2021	Net-Enabled Common Weather Information - Level 2 Adaptive Control/Enhanced Forecast	GY	
2022	Net-Enabled Common Weather Information - Level 3 Full NextGen	GY	

36

OI Operational Approval Risk (preliminary results, not validated)

Code	Number of Ols	Percent of Ols
	53	45%
G	19	16%
GY	11	9%
Y Y	21	18%
R	15	13%
Total	119	

Emerging System Constraints

Wake Vortex

Evaluating Wake Vortex Risk in NextGen

Evaluated NextGen Ops Cons

Example Key Areas

- Tight Routes in Transition Airspace
- Closely Spaced Parallel Approaches
- 4DT Separation Criteria
- Controller Workload and Complexity

EWR CSPA

EWR 22L,R – TEB 24 Interaction

- Further examination of the data PDARS data showed that approaches to the 22s may provide a more tightly constrained scenario.
- TEB 24 departures currently prevent use of EWR 22R for arrivals
- Arrivals to EWR 22L must cross TEB and maintain safe separation from TEB 19 & 24 arrivals and departures.

EWR 22L Arrivals and TEB 24 Departures

- Currently TEB 24 departures must snake under then over the ILS arrivals to 22L.
- EWR 22L approaches at ~3000 ft over TEB

TEB departures are helddown until clear of the EWR arrival stream

TEB 24 Departures EWR 22L Arrivals

EWR 22 – LGA 13 CDA Interaction

- Future arrivals may use continuous descent approaches (CDAs) to improve fuel efficiency and reduce environmental impacts.
- A CDA to EWR 22s would conflict (only ~450ft vertical separation) with a CDA to LGA
- Currently the two approaches are vertically separated

EWR 22L Arrivals LGA 13 Arrivals

Questions

