ATL Capacity Profiles

Overview

- Background and Motivation
- Queueing Models
- Approach
- Experiments
- Results
- On-going Research

Deterministic / stochastic model comparisons

Average Delay per Flight (min)

Deterministic / stochastic model comparisons

Average Delay per Flight (min)

Interpretation

- Shift from highly stochastic to fully
- deterministic system reduces delay by 10% plus 1 minute per flight
- Evening schedule to have even inter-arrival times within each 15-minute interval reduces delay by an additional 4% plus 1 minute per flight

Comparison of Delay Profiles (SFO)

Total Delays at SFO (min)

Comparison of Delay Profiles (ATL)

Total Delays at ATL (min)

Comparison of Delay Profiles (BOS)

Total Delays at BOS (min)

S. North

Conjecture

- Largest differences between stochastic and deterministic cases arise when
 - multiple congested periods exist
 - the system has time to recover between these periods in the deterministic case, but is not able to do so in the stochastic case

Conclusions

- Highly deterministic system enabled by 4D trajectory precision would reduce delay 10-14% plus 1-2 min per flight (*all else equal*)
- Result holds over a wide range of congestion levels
- Improvement may be greater under certain congestion profiles
- Queueing models are a useful complement to simulation models in examining these matters

Overview

- Background and Motivation
- Queueing Models
- Approach
- Experiments
- Results
- On-going Research

Intermediate Levels of Trajectory Precision

Two approaches:

- 1. Extend the Deterministic Queueing Model by Assigning Lateness Errors to Flights
- 2. Think of Queue Length as a mass, and model its diffusion over time

Metered Time Adherence Error Model

- Each flight is assigned a **Scheduled Time of Arrival**, which it meets with some **imprecision error**
- <u>Inputs</u>: Metered schedule of arrivals; safety separation headways, level of adherence error
- <u>Approach</u>: Model time of arrivals as normal random variables (*with standard deviation representing adherence error*)
- <u>Outputs</u>: Expected delay of all flights; average number of flights in queue; average waiting time per flight, etc.

Metered Time Adherence Error Model

Actual Times of Arrival as Normal Random Variables

Metered Time Adherence Error Model

- Application:
 - Estimate delays due to imperfect adherence to metered arrival times
 - <u>Inputs</u>: Time spacing between consecutive metered arrivals m; minimum headway h; level of adherence error o
 - <u>Assumption</u>: Flights do not overtake each other (adherence errors are small)
 - <u>Sample Application</u>: Stream of flights for landing, runway as meter point, freeze horizon is 400 nmi

Metered Time Adherence Error Model

- 1. Compute $\Delta = (m-h)/\sigma$
- 2. Select corresponding curve
- Multiply values in vertical axis by σ

Metered Time Adherence Error Model – Next Steps

- Include two types of aircraft: 4DT equipped (high precision) and non-equipped (low precision) aircraft
- Re-sequencing of arrivals:
 - Cases where precision errors are large enough
 - Flights don't arrive at the meter fix in the scheduled order

Diffusion Approximation

- Queue Length can be expressed on a continuum, which is approximately true when very large numbers of customers are involved
- Solve the Kolmogorov Forward Diffusion Equation:

 $f_i(x;t)$ = density of length of queue *i* at time *t*

