Session III Issues for the Future of ATM

AATT Future Concepts Definition
John Hansman, MIT

MIT International Center for Air Transportation

AATT Future Concepts:Baseline Definition

Prof. R. John Hansman

Department of Aeronautics and Astronautics Massachusetts Institute of Technology Cambridge, MA 02139 USA

Proliferation of Operational Concepts

- 1996 (Prior)
 - RTCA Task Force 3
 - NAS Architecture (v. 2.0)
 - Free Flight Action Plan
- 1997 (During)
 - FAA Operational Concepts (2005) (draft)
 - RTCA Select Committee Users Evolutionary Operational Concepts (2005) (draft)
 - NAS Architecture (v. 3.0) (draft)
 - "Flight 2000" Operational Concepts
 - European Ops Concept

Objective and Approach

- Develop a baseline operational concept to help guide ATM and airport research priorities over the medium and long term.
- Three-pronged approach:
 - Review existing proposed operational concepts
 - Develop a set of "first principles" to guide concept development
 - Survey stakeholders on perceived needs

First-Principle Observations

- The goal of a new concept of operations it to improve the Capacity and Efficiency of the NAS while maintaining or improving Safety
- The ATM system will transition through series of evolutionary steps
- Management and responsibility for air traffic will remain a ground based function for the foreseeable future
- The system and Con Ops must be capable of operating in degraded modes or in off-design conditions
- Ground based ATM must become more efficient
- Terminal area is key constraint in CONUS

First-Principle Observations (2)

- Inefficiency often results from complex interacting processes and constraints
 - Dynamics of current NAS not well understood
 - Need diagnostic studies to ID constraints (e.g., Departure Planner Project)
- Airspace and procedure design are a principal mechanism to improve efficiency. New technology should allow relaxation of airspace design constraints
- Historical precedents indicate it will be very difficult to reduce separation standards
- Safety and environmental issues will restrict transition to new Con Ops

Stakeholder Needs - The Boeing Study -

Focused interviews

- System users
 - Air Transport Association (ATA)
 - Regional Airline Association (RAA)
 - National Business Aviation Association (NBAA)
 - General Aviation Manufacturers Association (GAMA)
 - Aircraft Owners and Pilots Association (AOPA)
 - Helicopter Association International (HAI)
 - Department of Defense (DoD)
- Service providers
 - Federal Aviation Administration (FAA)
 - Airports Council International North America (ACI-NA)
 - Department of Defense (DoD)
- Labor organizations
 - Air Line Pilots Association (ALPA)
 - National Air Traffic Controllers Association (NATCA)
- Professional organizations
 - Airline Dispatchers Federation (ADF)

Capacity vs Efficiency

- Most inefficiencies (e.g., delays, milesin-trail spacing) are caused by capacity constraints
- Efficiency-based strategies tend to focus on user-specific cost- benefits which are difficult to support as a basis for national infrastructure investment
- Capacity based strategies have benefits which are clearly accrued by the traveling public as well as distributed among the user community enabling improved operational efficiency
- Conclusion: Capacity should be the key driver in NAS modernization

Stakeholder Needs - The Boeing Study -

Results

- Capacity
 - Terminal area
 - Airline scheduling practices
 - More runways
 - Requirements for separation standards
 - Wake vortex separation standards
- Efficiency
 - Collaborative decision making
 - Exchange of real time information
 - Automation tools for air traffic controller productivity
 - Airspace redesign
 - Exchange of same weather information
 - Surface guidance
- Safety
 - Human factors research
 - Surveillance and communication in low altitude
 - Cockpit display of traffic information
 - Icing
 - Exchange of same weather information
 - Surface guidance

Stakeholder Needs - The Boeing Study -

- Results (cont.)
 - Affordability
 - Cost transfer to users
 - Global interoperability
 - Procedures
 - Development of new TERPS criteria
 - New procedures for existing technology
 - New procedures for new technology
 - Access

Overall Observations

- FAA Operational Concept (2005) is reasonable baseline
- Treat Operational Concept 2005 as the baseline and ID refinements and issues
- Consider 2005-2015 evolution

Operational Concept 2005 Refinements & Issues

- Capacity considerations (e.g., airspace design)
- Implications/content of "Flight Object"
- Other-than-normal operations
 - Emergencies
 - Communications failure
 - "Flight Object" data integrity
 - Secondary navigation
- Role of decision aids
- Transition plan/issues
- Incentivization
- Mixed equipage
- Implications for architecture
- Role of "Flight 2000"?
- Compatibility with ICAO
- International interoperability