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NRA Objectives

» Develop and apply data mining algorithms that identify degraded
states of the NAS and their precursors

= |dentify sequences of states that lead from precursor to
degraded states with higher than normal probability

= Accommodate supervised learning through human feedback
= Indicate operationally significant incidents

» Develop data mining algorithms to aid in the development of
metrics associated with safety and efficiency of the NAS

» Year 2 - Add capability of data mining algorithms to be updated
daily
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Year 3 Work Plan Overview

|
‘STEP 7.1 Tes+ BED Dlscusswr{s WITH NASA|
YEAR 3
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TAsK 88: FINAL REPQRT
K 9: MEETING

» Develop approach for ATM-X testbed integration through discussions with Testbed
personnel (already started).

» Continue iterative anomaly detection development
> Incorporate energy features into anomaly detection
> Add metrics derived from automated voice processing to features

» Continue to develop approaches for prognostic modeling (go arounds)

» Continue to develop continuous processing moving towards real-time model
updates
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Year 3 Work Activities to date

» Finalize additional safety-based indicators to augment
the current set

o Qvertake situations
o High-Energy approaches

» Finalize voice metrics to include in anomaly detection
» Continued data preparation for training data sets

» Development of go-around causal factor analysis to lead
to predictive model for go-arounds

» Initial design for integration with NASA systems
o Sherlock ATM Data Warehouse
o ATM-X Testbed
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Data Sets Utilized & Methodologies
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Additional Data Sets Selected/Prepared

» Sherlock ATM Data Warehouse Track and Flight Plan Data for NY

Area
- Merged 8 ATC facilities — N90, ZNY, ZOB, ZID, ZDC, ZBW, ZTL, ZAU

» Processing expanded to Jan 2016 — present ~ 3+ years of
operational data.

» Performance Data from Sherlock Reports
o Turn to Final (measures that characterize the final approach)

» ATC Voice Data
- Downloading Voice Recordings from liveatc.net, starting from 2/13/17
= Focus on JFK tower, final, and approach
= KJFK tower (3 frequencies)
= KJFK final (1)
= KJFK CAMRN approach (4)
= KJFK ROBER approach (2)
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Data Sets...

AII types of operations
~ 1GB per day [35?;_
o ~12- 14K fllght tracks per da
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Turn to Final Overview = measures used as features for anomaly detection

Sherlock Performance Report Data

e Turn-to-final (TTF)
Direction of flight Overshoots
Final approach path intercept
W anglc ot ntercept
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Green = ground
speed <180
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Methodologies Employed

» Iterative Development, Analysis, Review

2. Prepare Data Sets
1. SME Consultation/Review 3. Run Anomaly Detection

5. Analyze Results 4. Add Supplemental Data

~Quarterly Frequency
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SME Review Tool

» Automatically makes videos of top “X” anomalous flights
» Merges and syncs voice recording (when available)

» Allows for quick SME review

» Facilitates supervised learning
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Source
NAS Data

Playback
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Overnight Update in Development System (current)

Track and
Summary
Data

12 Months
Historical
Data

ATC
Voice
Metrics
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SME Feedback

Playback with Audio

Graphical cause of anomaly
depictions for most anomalous
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SME Review
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Integration with NASA Systems
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Integration Overview

» Integration with NASA systems includes 2 phases:
1. Phase | — Migrate anomaly detection processing to Sherlock ATM
Data Warehouse Big Data computing cluster
2. Phase Il — Integrate with ATM-X testbed by producing an Anomaly
Detection Service
» Advantages to this approach:
o Sherlock provides access to the data (IFF/RD/ and TTF)

o Leverages Sherlock existing Big Data computing assets

o |ntegration is internal inside NASA programs (no need for SAA or other
external access mechanism)

A" TTDANAAN

NWNESS B N EwwEw
SCIENTIF ONS




Phase |: Migration of Anomaly Detection to Sherlock

*
adoop

Simplified Sherlock Architecture
I

: Anomaly I
4 Big Data Detection I
Cluster
I Web-based
S Interfaces
o4 "
Oracle Geo Data ::
Database Server I
Weather I
ETL, Server I
Aggregation

—_—— e —— — — = — —— — — — — — — — — — — — — — — — — — — — — — — — — — — — = = =

Metadata Generation
- - Data Collection and
Processing (File System)
Transformation -

Wx Data Advisories Raw Data
(various) (fly.faa.gov)




Migration of Anomaly Detection to Sherlock

SUPERMICR® SUPERMICR®

Sherlock Big Data System

SuperMicro Engineered System
Cloudera Hadoop stack
42U rack

Total of 480 CPU Cores, 1752
TB Storage

1 Management Node

3 Name Nodes (Dual 6 Core,
256 GB RAM each)

» 36 Data Nodes (Dual 6 Core,
128 GB RAM each)
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Phase Il: Integration with ATM-X Testbed Architecture

Researchers
—
Application
Aware
Operator Center Anomaly Other ATM
Developers —_ Functions Detection Service Functions
Framework Layer
Vendors Communication Middleware
Platform Layer Application
: .« Network Interconnect _. e Agnostic
Cloud Service __ | = ¢ : |
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Implementation Schedule

» Phase | — 1st Quarter 2019
» Phase Il — 2" Quarter 2019
» Government shutdowns could affect the overall schedule
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Anomaly Detection Updates
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Anomaly Detection Overview

» Compute nine anomaly indicators:
(those in bold developed under NASA Phase 2 SBIR)

(e]

(e]

(e]

(e]

(e]

Heading Trajectory k-Nearest Neighbor

Altitude Trajectory k-Nearest Neighbor

Angle and Speed at Intercept

Maximum Overshoot

Glide Path Angle at Intercept (Altitude divided by Dist. at Intercept)
Final Approach Positions (unusual locations 1-5nm before runway)
Overtake Potential (one aircraft closing in on another near runway)
Aircraft Energy (unusually high or low specific energy on approach)

» Normalcy Score Broker (NSB) combines indicators into single anomaly
score to identify flights that are outliers in one or more indicators
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Aircraft Energy Anomalies

|dentifies flights with unusual
specific energy on approach
> Too high & fast or low & slow
- Specific energy %vz + gh
For velocity v and altitude h
» Measured over approach’s final

~15 nm

o Sample points every 0.05 nm along
typical approach path

> Velocities and positions smoothed
using improved Kalman filter

» Energy paths have multiple
clusters (see figure, right)
o Different approaches & runways

Specific Energy (J/kg) (x 1,000)

) D.liista-;lce ;o A?rivai Th-rfesh.:)ld an;
JFK 31R energy points individually
colored by normalcy over 2018




Aircraft Energy Anomalies

» Energy tracks compared to find
anomalies
» Energies normalized to z-scores

at each sampled distance

o Enables comparison of scores
across distances with different
variances

» Use k-Nearest Neighbor (k-NN)
to identify anomalous energy

Specific Energy (J/kg) (x 1,000)

tracks
o Compare tracks with L1 norm
> Use exponential Welghted average o ’ Sistz:;'lce-glto Aérrivrjl THi“estjold (nm)
= Y i
over k=0.5% nearest neighbor 2018 JFK 31R flight energy tracks
IStances colored by Aircraft Energy indicator
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Combined Anomaly Scores

» Normalcy Score Broker (NSB) combines multiple
anomaly indicators into single score

» Combined score is proportion of flights at least as
anomalous in every indicator

—_
o

0.00001
o Joint CDF measures mass of
distribution in upper right 0,000

o
o

» Ex: Starred flight's score is
proportion of flights in red
rectangle (including self)

o Only 0.1% of flights have both
indicator scores at least as
anomalous as the starred flight

0.001

KNN Altitude Score (Log10)
NSB Score

-1.5

-2.0 ¢
-70 -65 -6.0 -55 -50 -45 -40

KNN Heading Score (Log10)
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NSB Score Ties

» Normalcy Score Broker (NSB) can result in many ties for
the most anomalous combined score

o More indicators (higher dimensions) generally leads to more ties

o Negatively correlated indicators lead to more ties

» Some nearby flights of interest fall in the rankings
Ties only have self in
upper right

NSB Scores (8 Indicators)

o o o
N w IS

Probability Density Function
©

0.0
0.000001 0.00001 0.0001 0.001 0.01 0.1 1.0
NSB Combined Score (Log Scale)
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Smoothed NSB Scores

» Break ties and elevate nearby flights by kernel-smoothing the
“mass” of each flight

> First, convert each indicator into a percentile value (does not change
ordering and therefore NSB score remains)

> Then, replace the point-mass of each flight with a multivariate beta
distribution

» Example (at right): .
o Aflight with indicator percentiles 0.75, 0.99 s

1.0 e—

o Multivariate beta distribution smooths %Z;
flight's mass over region [0, 1]2 g .
o Example uses exaggerated smoothing § 0

bandwidth for improved visualization 2 03

» Smoothed NSB score computes N
total mass in upper-right of the flight's
iIndicator percentiles

0.2
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Smoothed NSB Score Results: 8 Indicators

» Smoothed scores more
accurately reflect the
underlying joint probability
distribution

» Ties in anomaly tail are
eliminated

» Flights previously tied for
second place are promoted

o Receive scores similar to
“nearby” flights

)

Smoothed NSB Score (-log10)
N W OB~ O O N 00 ©

—_—

o

o 1 2 3 4 5 6 7 8 9
Empirical NSB Score (-log10)
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Smoothed NSB Score Results: 2 Indicator Example

“Nearby” flights receive more similar scores (subtle)

Original NSB Score Smoothed NSB Score
4 ] = 0.00001 | ’ - 0.00001
0.5 — . 0.5 . . .
o =)
— = 0.0001 — ° oo ° o - 0.0001
()] oo (@) o Yo %", o o &
é 0.0 . :lo, 0.0 f“.. .8
9 o.. Lo e l.,.o.. o
S ro 2 - 0.001 g o 8 - 0.001
®» -0.5 % & -0.5 .
4 e X - *
= S, -0.01 = : -0.01
) _10 ‘ < [} _10
o 4 £ %
E ; 2 ;
< - 0.1 < - 0.1
-15 -1.5
-1
-6 -5 -4 -6 -5 4
Heading Track Score (Log10) Heading Track Score (Log10)
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Analysis of Unstructured Data (ATC Voice)
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Background & Objectives

» ATC voice data from LiveATC.com records the message
exchange between the pilots and the controllers

» Incorporate ATC voice metrics as additional anomaly
detection indicators, and explore the correlation between
voice features and flight traffic

» Initial trial of speech transcription has poor performance
due to lack of training dataset (corpus)

» Instead, spectrum analysis algorithm was applied to
extract representative features from the ATC audio data

\\
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Methodology — Framework

Digital Signal Channel Occupancy
Processing (DSP) Analysis

Calculate Constrained
Activate Rate (CAR)

Labeling Segment as
Controller or Pilot

Original Signal

Pre-Emphasis : .
Build Controller — Pilot

Classifier

} Estimate Censored
Spectrogram o Regression Model

Predict Controller — Pilot
Voice Activity

Voice Activity Feature | Simulate Active Rate
Detection(VAD) Extraction o Distribution

Silence Period
Removal

Flight-Voice Features

Segmentation
(BIC Method)

Create voice energy and
frequency congestion
feature table

:

Match feature table with
flights
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Digital Signal
Processing
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Digital Signal Processing Overview

Original signal — time
domain samples from ATC
tower audio

Audiof Voit

Pre-Emphasis

oooooo

Spectrogram — converting
signals into (frequency, time,
energy) tuples.

Frequency (Hz)

Spectrogram
(STFT)

Voice Activity . w | ‘ e | “
B . |
Detection S ‘i'ﬂﬂﬂ\‘mﬁ e e e &-Mn'i': el 1l
(thresholding)

Feature map — Each frame
is a vector of features for a
short time period (e.g., 20
ms)

MFCC Coefficients

Feature
Extraction
(MFCC & Filters)

Segmentation — Each
0 I |u I e segment contains only one

Segmentation ‘ i
(BIC method) L1 R b et g |

gl i ol "N i \ ! Speaker
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Flight-Voice
Features
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Flight-Voice Feature Analysis

» Three key timestamps identified for each flight operation:
o Corner post passing time
o Event time: time to pass intercept
o Landing time: time to land

» Extract flight-level features from voice data for every flight:
o TRACON channel: from CP time to event time.
o Tower channel: from event time to landing time.

» Case study for one specific anomalous flight

CP pass Time 18:01  4/12/2017 1800Z DAL 752 CAMRN — Tower Event Time 18:15 Landing Time 18:18

7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 1500 16:00 17:00 18:00 1p:00 20:00
L] i L] i L] i [l i [} I L] I L] I L] i L ] L ] 4 ] I L] I Ll I

(Minutes)

{)» 11:00 2:00 3:00 4:00 5:00
- I ) 2 ) 2 ) 2 () L ]

1.0

0.5-
&"
0.5

-1.0
1.0

Anomal appened
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Flight-Voice Feature Analysis

» Approach
o The total number of events per unit time within a flight time window, A
o The average duration (u) of voice activities (events) within a flight time
window
» Calculation
° Neracon = NUMber of voice communications in time interval [¢t4, t,].
> Ny = number of voice communications in time interval [t,, t5].

o A — Ntracon, — Niwr
tracon ty—t; twr ta—t,
N N
) _ Zi tracon Ti . _ Zi twr Ti
Utracon = Neracon y Hewr = Newr
w
CP Pass time: t, Event Time: t, Landing Time: t;

X 1:Q0 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 | 14:00
2 2 A 2 ) 2 L} L L} 2 2 A 2 ) 2 ) 2 ) . L} L () 2 () L

15:00 16:00 17:00 18:0p

TN TR I 2 R
4 —p| |« >
I
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Flight-Voice Feature Analysis

» Calculation

o Summarize voice energy statistics every second.
- Max, avg, 75q, 90q of energy statistics for every second (~25 frames).
- Each voice tape will have a feature matrix with dimension (1800, 4).
o Map every flight's time windows [t;, t,] and [t,, t5] to feature
matrix. Compute:
- Average audio energy within the time window.
- Max, min, 25q, 50q, 759, 90q, avg of the within-second-avg.
- Max, min, 25q, 50q, 75q, 90q, avg of the within-second-max.
- Max, min, 25q, 50q, 75q, 90q, avg of the within-second-75q.
- Max, min, 25q, 50q, 75q, 90q, avg of the within-second-90q.

CP Pass time: t; Event Time: t, Landing Time: t;

1:40 2:?0 ) 3:?0 ' 4:?0 . 5:?0 . 6:00 . 7:?0 . 8:?0 . 9:?0 ) 10.:00 ' 11500 . 12.:00 . 13.:00 14.:00 . 15.:00 ) 16.:00 ' 17.:00 ' 18.:
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|
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Pilot-Controller
Identification
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Pilot-Controller Identification

» Labeling
o Use the segmentation results (small 1) to aid us listening to audios.
o For each segment, assign a label as either pilot (1) or controller (2). All non-

speech segments will be assigned as 0.
o For each labeled segment, assign its label to all frames in the segment

b
Segments Segment 1: controller (2 Segment2 p|Iot Silence (0) Segment 4: controller (2
O 0o 0 02 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

Frames
—
All frames belonging to segment 1 will be labeled as controller

» Build Classifier
o Training
Build a classifier to predict the label for each frame, using 123 dimensional features (filter

bank and FOS and SOS).

o Testing
Predict the label for each frame of the audio clip(s).
Apply segmentation algorithm to audio clip(s)

- For each segment, the final label will be the majority of the frames’ label.
Segment 1 Segment 2 Silence (by VAD) Segment 4
2 2 2 2 2 2 2 000 0 0O 212 |2 |2
N /\ /
— —

0: vacant 2: controller

\ A
—— ——
2: controller 1: pilot
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Pilot-Controller Identification

» Manually label 3 audio clips, each of which covers a 30-minute ATC
tower communication.

» Select two labeled audio clip (4/28/2017 1830 Z & 4/28/2017 1800 2)
as training set and one (5/26/2017 2030 Z) as testing set.

Classifier Frame-wise Segment-wise Cons
accuracy accuracy

Logistic regression  75.0% 75% Easy to train Loss of temporal
relations
Linear SVM 75.3% 74% Hard to update
Easy to update with
new data
BiRNN 87.3% 78% Capable of transfer  Hard to train
learning (e.g.,

speech to text)

» Further experiments are required to validate our results — coincidently,
there is a woman controller in both the training audio clips (two on
4/24/2017) and testing audio (one on 5/26/2017).

:
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Channel Occupancy
Analysis
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Channel Occupancy Analysis

Data matching for each 5-minute time period:

Anomalous

flight

NSB Data Cleaning Group
Scores matching, etc, Y,
ASPM \ Data Cleaning Group
Dataset. (lag, UTC, etc.

flights

Short Time , .
S Fast E

Fourier
Transform

(Po;vér, [T|me “Frﬂeqd uéncy])
(STFT)

Correlation?
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Channel Occupancy Analysis

Histogram of Congested Active Rate for S-minute Interval

March June

» (Constrained) Active Rate: the percentage of time a o
communication channel is utilized within time interval N
» Result - September December

> Right censored threshold limit for ATC voice

communication is 60.69%

> Arrivals have stronger impact on the active rate and the

leading effect dissipates over time Incremental Effect of Active Rate with
. Higher visibility decreases active rate one flight operation adding in different period
4.00% 3.62%
° e . -.9
Positive daytime effect 5 o0 2 96%
o Stronger winds lead to more voice activities. Tailwind o U
speed has the strongest impact < 2.00%
0 .36%
> Flights with high NSB scores require more communication § 1.00% 84%
a 1. (s
n (o]
> Runway configuration fixed effect increase the active rate £ - 36 & 0
L 0.00%
as the runway utilization decreases Departures Arrivals

B Current: 5min Lead: 5~20min

_g‘ > T ‘ J |
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Analysis of Go-arounds
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Go-around Analysis

» Deeper look into special anomaly events, such as go-arounds

» Study period: 2018/04/01 — 2018/09/30 (JFK), with 445 go-
arounds and 101,932 non go-around flights

» Predict Go-Arounds based on features selected from PCA
dedicating to analyze both quantitative and qualitative
variables (Pages 2004)

» Estimate logistic regression model
- Dependent variable: whether a flight is a go-around
> Independent variables: principal components formed by features

» Varimax Rotation is done for interpreting the effects of each
components

» Quantify the contributions of causal factors

"
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Go-around Analysis

» Intercept with final approach features

o DIST_AT_INT, ANGLE_AT_INT, INT_RUNWAY _DIST, INT_TYPE = Int Outside Gate have
positive impact on go-around probability

o FinalApproachCylinder(-), GlideslopeAtintercept(-), INT _TYPE=Int Inside FAF have negative
impact on go-around probability

o ALT_DIFF_AT_INT, MAX_VERT_FT, MAX_HORIZ_FT have extremely small positive impact

on go-around probability (coef. = 0)

TEESS N N EwsEw|
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Go-around Analysis

» Separation Feature

o Incremental effect of go-arounds with 1nm adding in different

segments

(nautical mile)

n Overtake(+)_1 “ Overtake(+)_2 - Overtake(+)_3 “ Overtake(+)_4 n Overtake(+)_5

-4

.82 -0.94 -0.07 -0.03 -0.00

o The difference between theoretical (required) separation and real

separation increases the probability of go-arounds

N —
X

 METEBN AL'dﬂ& Berkeley

Theoretical separation: FAA Wake Separation Standards based on weight class pair

Real separation: for each aircraft leading-trailing pair, resample and interpolate the
time series of positions (latitude, longitude, altitude), then get the minimum
separation between two trajectory segments

vf— o — UNIVERSITY OF CALIFORNIA



Go-around Analysis

» Visibility Feature

Incremental effect of go-arounds with 1nm adding in different
segments

(statute mile)

o T Visled |5 | visle2 |5 | visbles |10

-0.21 -0.11 -0.10

o (Go-arounds less likely under visual conditions

» Weight Class

Variable Coef. Variable Coef.
WC_LEAD=F - WC_TRA=F -0.46
WC_LEAD=H 0.43 WC_TRA=H 0.62
WC_LEAD=L - WC_TRA=L -0.29
WC_LEAD=N 1.08 WC_TRA=N
WC_LEAD=S -1.01 WC_TRA=S -2.95

/* .".EE‘.".‘?H..“.' i AMﬂ& Berkeley
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Go-around Analysis

» Winds

o Strong tailwind increases the probability of go-arounds

» Agglomeration Effect

o The number of go-arounds in the 30-minute window, surrounding
the landing time of aircraft, has strong impact in increasing go-
arounds

> The time interval between the final approach start time and the
closest go-around time, in minutes, weakly decreases the
probability of go-arounds

o The number of aircrafts intending to arrive for the 15-minute
period has positive impact on go-around probability

&
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Next Steps




Next Steps

» Complete Development of Anomaly Detection System (Version 1.0)

o Additional SME involvement through review of energy and voice metric
features

> Finalize voice metrics to include in anomaly detection
o SME review of high emery feature outliers
o Develop initial go-around prediction model

» Implement Phase | — Migrate anomaly detection to Sherlock
o Create one year training set for anomaly detection model
o Deploy anomaly detection software to Sherlock Big Data System
o Configure data flows for overnight update
o V&V of data

» Prepare for Phase Il — Integrate with ATM-X Testbed
o Meetings with ATM-X testbed personnel
o Determine best design for testbed plug in adapter and Webservice

o Configure testbed connection
o V&V of data

L. meTEEM amars " Berkeley,
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