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Ø Overview Team Progress
§ NRA Objectives
§ Year 3 Work Plan & Activities
§ Data Set Utilized & Methodologies

Ø Integration with NASA Systems
§ Sherlock ATM Data Warehouse
§ ATM-X Testbed

Ø Anomaly Detection Updates
§ Updated indicators
§ NSB Scoring Results

Ø Analysis of Data
§ Update of voice data analysis
§ Building a prognostic model for go-arounds

Ø Next Steps
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} Develop and apply data mining algorithms that identify degraded 
states of the NAS and their precursors
§ Identify sequences of states that lead from precursor to 

degraded states with higher than normal probability
§ Accommodate supervised learning through human feedback
§ Indicate operationally significant incidents

} Develop data mining algorithms  to aid in the development of 
metrics associated with safety and efficiency of the NAS

} Year 2 - Add capability of data mining algorithms to be updated 
daily

} Year 3 - Deploy algorithms to the SMARTNAS testbed or other 
NASA Platforms
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} Develop approach for ATM-X testbed integration through discussions with Testbed 
personnel (already started).

} Continue iterative anomaly detection development
◦ Incorporate energy features into anomaly detection
◦ Add metrics derived from automated voice processing to features

} Continue to develop approaches for prognostic modeling (go arounds) 
} Continue to develop continuous processing moving towards real-time model 

updates



} Finalize additional safety-based indicators to augment 
the current set
◦ Overtake situations
◦ High-Energy approaches

} Finalize voice metrics to include in anomaly detection
} Continued data preparation for training data sets
} Development of go-around causal factor analysis to lead 

to predictive model for go-arounds
} Initial design for integration with NASA systems
◦ Sherlock ATM Data Warehouse
◦ ATM-X Testbed
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} Sherlock ATM Data Warehouse Track and Flight Plan Data for NY 
Area
◦ Merged 8 ATC facilities – N90, ZNY, ZOB, ZID, ZDC, ZBW, ZTL, ZAU

} Processing expanded to Jan 2016 – present ~ 3+ years of 
operational data.

} Performance Data from Sherlock Reports
◦ Turn to Final (measures that characterize the final approach)

} ATC Voice Data
o Downloading Voice Recordings from liveatc.net, starting from 2/13/17

§ Focus on JFK tower, final, and approach
§ KJFK tower (3 frequencies)
§ KJFK final (1)
§ KJFK CAMRN approach (4)
§ KJFK ROBER approach (2)
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} Sherlock Track and Flight Plan Data
◦ Merged ARTCC and TRACON
◦ Data from 8 facilities, 2 years of data
◦ Jan 16, 2016 – present
◦ All types of operations
◦ ~ 1GB per day
◦ ~ 12-14K flight tracks per day

Data Sets…
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Max Overshoot

Angle at Intercept

Green = ground 
speed <180

Ground Speed / 
Attitude at intercept

Distance at Intercept 12.3nm

Turn to Final Overview – measures used as features for anomaly detection 

Arrival 
Runway FAF

9

Sherlock Performance Report Data
Turn-to-final (TTF)

Overshoots
Final approach path intercept



} Iterative Development, Analysis, Review
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1. SME Consultation/Review

2. Prepare Data Sets

3. Run Anomaly Detection

4. Add Supplemental Data5. Analyze Results

~Quarterly Frequency



} Automatically makes videos of top “X” anomalous flights
} Merges and syncs voice recording (when available)
} Allows for quick SME review
} Facilitates supervised learning
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} Integration with NASA systems includes 2 phases:
1. Phase I – Migrate anomaly detection processing to Sherlock ATM 

Data Warehouse Big Data computing cluster
2. Phase II – Integrate with ATM-X testbed by producing an Anomaly 

Detection Service
} Advantages to this approach:
◦ Sherlock provides access to the data (IFF/RD/ and TTF) 
◦ Leverages Sherlock existing Big Data computing assets
◦ Integration is internal inside NASA programs (no need for SAA or other 

external access mechanism)
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User Interface
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} SuperMicro Engineered System
} Cloudera Hadoop stack
} 42U rack
} Total of 480 CPU Cores, 1752 

TB Storage
} 1 Management Node
} 3 Name Nodes (Dual 6 Core, 

256 GB RAM each)
} 36 Data Nodes (Dual 6 Core, 

128 GB RAM each)
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} Phase I – 1st Quarter 2019
} Phase II – 2nd Quarter 2019
} Government shutdowns could affect the overall schedule 



19



} Compute nine anomaly indicators:
(those in bold developed under NASA Phase 2 SBIR)
◦ Heading Trajectory k-Nearest Neighbor
◦ Altitude Trajectory k-Nearest Neighbor
◦ Angle and Speed at Intercept
◦ Maximum Overshoot
◦ Glide Path Angle at Intercept (Altitude divided by Dist. at Intercept)
◦ Final Approach Positions (unusual locations 1-5nm before runway)
◦ Overtake Potential (one aircraft closing in on another near runway)
◦ Aircraft Energy (unusually high or low specific energy on approach)

} Normalcy Score Broker (NSB) combines indicators into single anomaly 
score to identify flights that are outliers in one or more indicators
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} Identifies flights with unusual 
specific energy on approach
◦ Too high & fast or low & slow
◦ Specific energy !

"
𝑣" + 𝑔ℎ

� For velocity 𝑣 and altitude ℎ

} Measured over approach’s final 
~15 nm
◦ Sample points every 0.05 nm along 

typical approach path
◦ Velocities and positions smoothed 

using improved Kalman filter
} Energy paths have multiple 

clusters (see figure, right)
◦ Different approaches & runways
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} Energy tracks compared to find 
anomalies

} Energies normalized to z-scores 
at each sampled distance
◦ Enables comparison of scores 

across distances with different 
variances

} Use k-Nearest Neighbor (k-NN) 
to identify anomalous energy 
tracks
◦ Compare tracks with L1 norm
◦ Use exponential weighted average

over k=0.5% nearest neighbor 
distances
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2018 JFK 31R flight energy tracks 
colored by Aircraft Energy indicator
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} Normalcy Score Broker (NSB) combines multiple 
anomaly indicators into single score

} Combined score is proportion of flights at least as 
anomalous in every indicator
◦ Joint CDF measures mass of

distribution in upper right

} Ex: Starred flight’s score is
proportion of flights in red
rectangle (including self)
◦ Only 0.1% of flights have both

indicator scores at least as
anomalous as the starred flight
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0.1%



} Normalcy Score Broker (NSB) can result in many ties for 
the most anomalous combined score
◦ More indicators (higher dimensions) generally leads to more ties
◦ Negatively correlated indicators lead to more ties

} Some nearby flights of interest fall in the rankings
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Ties only have self in
upper right



} Break ties and elevate nearby flights by kernel-smoothing the 
“mass” of each flight
◦ First, convert each indicator into a percentile value (does not change 

ordering and therefore NSB score remains)
◦ Then, replace the point-mass of each flight with a multivariate beta 

distribution
} Example (at right):
◦ A flight with indicator percentiles 0.75, 0.99
◦ Multivariate beta distribution smooths

flight’s mass over region [0, 1]2

◦ Example uses exaggerated smoothing
bandwidth for improved visualization

} Smoothed NSB score computes
total mass in upper-right of the flight’s
indicator percentiles
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} Smoothed scores more 
accurately reflect the 
underlying joint probability 
distribution

} Ties in anomaly tail are 
eliminated

} Flights previously tied for 
second place are promoted
◦ Receive scores similar to 

“nearby” flights
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} “Nearby” flights receive more similar scores (subtle)
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} ATC voice data from LiveATC.com records the message 
exchange between the pilots and the controllers

} Incorporate ATC voice metrics as additional anomaly 
detection indicators, and explore the correlation between 
voice features and flight traffic

} Initial trial of speech transcription has poor performance 
due to lack of training dataset (corpus)

} Instead, spectrum analysis algorithm was applied to 
extract representative features from the ATC audio data
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Original Signal

Pre-Emphasis

Feature 
Extraction

Voice Activity 
Detection(VAD)

Silence Period 
Removal

Segmentation
(BIC Method)

Calculate Constrained 
Activate Rate (CAR)

Spectrogram
Estimate Censored 
Regression Model

Labeling Segment as 
Controller or Pilot

Build Controller – Pilot 
Classifier

Predict Controller – Pilot 
Voice Activity

Simulate Active Rate 
Distribution

Digital Signal 
Processing (DSP)

Channel Occupancy 
Analysis

Controller – Pilot 
Identification

Create voice energy and 
frequency congestion 

feature table

Match feature table with 
flights

Flight-Voice Features
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01
Digital Signal 
Processing
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Pre-Emphasis

Spectrogram
(STFT)

Voice Activity 
Detection

(thresholding)

Feature 
Extraction

(MFCC & Filters)

Segmentation
(BIC method)

Original signal – time 
domain samples from ATC 
tower audio

Spectrogram – converting 
signals into (frequency, time, 
energy) tuples.

Feature map – Each frame
is a vector of features for a 
short time period (e.g., 20 
ms)

Segmentation – Each 
segment contains only one 
speaker
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02
Flight-Voice 

Features



} Three key timestamps identified for each flight operation:
◦ Corner post passing time
◦ Event time: time to pass intercept
◦ Landing time: time to land

} Extract flight-level features from voice data for every flight:
◦ TRACON channel: from CP time to event time.
◦ Tower channel: from event time to landing time.

} Case study for one specific anomalous flight
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4/12/2017 1800Z   DAL 752  CAMRN – Tower Event Time 18:15 Landing Time 18:18CP pass Time 18:01

(Minutes)Anomaly happened



} Approach
◦ The total number of events per unit time within a flight time window, 𝜆
◦ The average duration (𝜇) of voice activities (events) within a flight time 

window
} Calculation
◦ 𝑁*+,-./ = number of voice communications in time interval [𝑡!, 𝑡"].
◦ 𝑁*5+ = number of voice communications in time interval [𝑡", 𝑡6].
◦ 𝜆*+,-./ =

789:;<=
*>?*@

; 𝜆*5+ =
78B9
*C?*>

◦ 𝜇*+,-./ =
∑ EF
G89:;<=
F
789:;<=

; 𝜇*5+ =
∑ EF
G8B9
F
78B9

Event Time: 𝒕𝟐 Landing Time: 𝒕𝟑CP Pass time: 𝒕𝟏

1 2 3 N

T1 T2 T3 Tn



} Calculation
◦ Summarize voice energy statistics every second.

� Max, avg, 75q, 90q of energy statistics for every second (~25 frames).
� Each voice tape will have a feature matrix with dimension (1800, 4).
◦ Map every flight’s time windows [𝑡!, 𝑡"] and [𝑡", 𝑡6] to feature 

matrix. Compute:
� Average audio energy within the time window.
� Max, min, 25q, 50q, 75q, 90q, avg of the within-second-avg.
� Max, min, 25q, 50q, 75q, 90q, avg of the within-second-max.
� Max, min, 25q, 50q, 75q, 90q, avg of the within-second-75q.
� Max, min, 25q, 50q, 75q, 90q, avg of the within-second-90q.
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Event Time: 𝒕𝟐 Landing Time: 𝒕𝟑CP Pass time: 𝒕𝟏
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03
Pilot-Controller 
Identification



} Labeling
◦ Use the segmentation results (small 𝜆) to aid us listening to audios.
◦ For each segment, assign a label as either pilot (1) or controller (2). All non-

speech segments will be assigned as 0.
◦ For each labeled segment, assign its label to all frames in the segment.

} Build Classifier
◦ Training

� Build a classifier to predict the label for each frame, using 123 dimensional features (filter 
bank and FOS and SOS).

◦ Testing
� Predict the label for each frame of the audio clip(s).
� Apply segmentation algorithm to audio clip(s).
� For each segment, the final label will be the majority of the frames’ label.
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Segment 1: controller (2) Segment 2: pilot (1) Silence (0) Segment 4: controller (2)
2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0 2 2 2 2 2 2 2 2 2

All frames belonging to segment 1 will be labeled as controller

Segments

Frames

Segment 1 Segment 2 Silence (by VAD) Segment 4
2 2 1 1 2 2 1 1 2 2 2 2 2 2 1 1 1 1 1 2 0 0 0 0 0 0 1 2 2 2 2 1 2 2 2

2: controller 1: pilot 2: controller0: vacant



} Manually label 3 audio clips, each of which covers a 30-minute ATC 
tower communication.

} Select two labeled audio clip (4/28/2017 1830 Z & 4/28/2017 1800 Z) 
as training set and one (5/26/2017 2030 Z) as testing set.

} Further experiments are required to validate our results – coincidently, 
there is a woman controller in both the training audio clips (two on 
4/24/2017) and testing audio (one on 5/26/2017).
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Classifier Frame-wise 
accuracy

Segment-wise 
accuracy

Pros Cons

Logistic regression 75.0% 75% Easy to train Loss of temporal 
relations
Hard to updateLinear SVM 75.3% 74%

BiRNN 87.3% 78%

Easy to update with 
new data
Capable of transfer 
learning (e.g., 
speech to text)

Hard to train
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04
Channel Occupancy 

Analysis



ASPM
Dataset.
-flights

Data Cleaning
(lag, UTC, etc.)

Operation 
features

Group

Short Time 
Fast 

Fourier 
Transform 

(STFT)
(Power, [Time, Frequency]) 

Voice Activity
Detection (VAD)

Active rate
(per 5 min)

Correlation?
Airport 
Weather 
info.

NSB 
Scores

Data Cleaning
(matching, etc.)

Group Anomalous 
flight 
Groups

Data matching for each 5-minute time period:



} (Constrained) Active Rate: the percentage of time a 

communication channel is utilized within time interval

} Result

◦ Right censored threshold limit for ATC voice 

communication is 60.69%

◦ Arrivals have stronger impact on the active rate and the 

leading effect dissipates over time

◦ Higher visibility decreases active rate

◦ Positive daytime effect

◦ Stronger winds lead to more voice activities. Tailwind 

speed has the strongest impact

◦ Flights with high NSB scores require more communication

◦ Runway configuration fixed effect increase the active rate 

as the runway utilization decreases
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} Deeper look into special anomaly events, such as go-arounds
} Study period: 2018/04/01 – 2018/09/30 (JFK), with 445 go-

arounds and 101,932 non go-around flights
} Predict Go-Arounds based on features selected from PCA 

dedicating to analyze both quantitative and qualitative 
variables (Pagès 2004)

} Estimate logistic regression model
◦ Dependent variable: whether a flight is a go-around
◦ Independent variables: principal components formed by features

} Varimax Rotation is done for interpreting the effects of each 
components

} Quantify the contributions of causal factors



} Intercept with final approach features
◦ DIST_AT_INT, ANGLE_AT_INT, INT_RUNWAY_DIST, INT_TYPE = Int Outside Gate have 

positive impact on go-around probability

◦ FinalApproachCylinder(-), GlideslopeAtIntercept(-), INT_TYPE=Int Inside FAF have negative 

impact on go-around probability

◦ ALT_DIFF_AT_INT, MAX_VERT_FT, MAX_HORIZ_FT have extremely small positive impact 

on go-around probability (coef. ≈ 0)



} Separation Feature
◦ Incremental effect of go-arounds with 1nm adding in different 

segments

◦ The difference between theoretical (required) separation and real 

separation increases the probability of go-arounds
� Theoretical separation: FAA Wake Separation Standards based on weight class pair
� Real separation: for each aircraft leading-trailing pair, resample and interpolate the 

time series of positions (latitude, longitude, altitude), then get the minimum 
separation between two trajectory segments

0 Overtake(+)_1 1 Overtake(+)_2 2.5 Overtake(+)_3 5 Overtake(+)_4 8 Overtake(+)_5

-4.82 -0.94 -0.07 -0.03 -0.00

(nautical mile)



} Visibility Feature
◦ Incremental effect of go-arounds with 1nm adding in different 

segments

◦ Go-arounds less likely under visual conditions
} Weight Class
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0 VISIBLE_1 3 VISIBLE_2 5 VISIBLE_3 10

-0.21 -0.11 -0.10

(statute mile)

Variable Coef.

WC_TRA=F -0.46	

WC_TRA=H 0.62	

WC_TRA=L -0.29	

WC_TRA=N -

WC_TRA=S -2.95	

Variable Coef.

WC_LEAD=F -

WC_LEAD=H 0.43	

WC_LEAD=L -

WC_LEAD=N 1.08	

WC_LEAD=S -1.01	



} Winds
◦ Strong tailwind increases the probability of go-arounds

} Agglomeration Effect
◦ The number of go-arounds in the 30-minute window, surrounding 

the landing time of aircraft, has strong impact in increasing go-
arounds
◦ The time interval between the final approach start time and the 

closest go-around time, in minutes, weakly decreases the 
probability of go-arounds
◦ The number of aircrafts intending to arrive for the 15-minute 

period has positive impact on go-around probability
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} Complete Development of Anomaly Detection System (Version 1.0)
◦ Additional SME involvement through review of energy and voice metric 

features
◦ Finalize voice metrics to include in anomaly detection
◦ SME review of high emery feature outliers
◦ Develop initial go-around prediction model

} Implement Phase I – Migrate anomaly detection to Sherlock
◦ Create one year training set for anomaly detection model
◦ Deploy anomaly detection software to Sherlock Big Data System
◦ Configure data flows for overnight update
◦ V&V of data

} Prepare for Phase II – Integrate with ATM-X Testbed
◦ Meetings with ATM-X testbed personnel
◦ Determine best design for testbed plug in adapter and Webservice
◦ Configure testbed connection
◦ V&V of data
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