

Contents

- Overview Team Progress
 - NRA Objectives
 - Year 3 Work Plan & Activities
 - Data Set Utilized & Methodologies
- Integration with NASA Systems
 - Sherlock ATM Data Warehouse
 - ATM-X Testbed
- Anomaly Detection Updates
 - Updated indicators
 - NSB Scoring Results
- Analysis of Data
 - Update of voice data analysis
 - Building a prognostic model for go-arounds
- Next Steps

NRA Objectives

- Develop and apply data mining algorithms that identify degraded states of the NAS and their precursors
 - Identify sequences of states that lead from precursor to degraded states with higher than normal probability
 - Accommodate supervised learning through human feedback
 - Indicate operationally significant incidents
- Develop data mining algorithms to aid in the development of metrics associated with safety and efficiency of the NAS
- Year 2 Add capability of data mining algorithms to be updated daily
- Year 3 Deploy algorithms to the SMARTNAS testbed or other NASA Platforms

Year 3 Work Plan Overview

YEAR 3 TASKS 7, 8,9

- Develop approach for ATM-X testbed integration through discussions with Testbed personnel (already started).
- Continue iterative anomaly detection development
 - Incorporate energy features into anomaly detection
 - Add metrics derived from automated voice processing to features
- Continue to develop approaches for prognostic modeling (go arounds)
- Continue to develop continuous processing moving towards real-time model updates

Year 3 Work Activities to date

- Finalize additional safety-based indicators to augment the current set
 - Overtake situations
 - High-Energy approaches
- Finalize voice metrics to include in anomaly detection
- Continued data preparation for training data sets
- Development of go-around causal factor analysis to lead to predictive model for go-arounds
- Initial design for integration with NASA systems
 - Sherlock ATM Data Warehouse
 - ATM-X Testbed

Data Sets Utilized & Methodologies

Additional Data Sets Selected/Prepared

- Sherlock ATM Data Warehouse Track and Flight Plan Data for NY Area
 - Merged 8 ATC facilities N90, ZNY, ZOB, ZID, ZDC, ZBW, ZTL, ZAU
- Processing expanded to Jan 2016 present ~ 3+ years of operational data.
- Performance Data from Sherlock Reports
 - Turn to Final (measures that characterize the final approach)
- ATC Voice Data
 - Downloading Voice Recordings from liveatc.net, starting from 2/13/17
 - Focus on JFK tower, final, and approach
 - KJFK tower (3 frequencies)
 - KJFK final (1)
 - KJFK CAMRN approach (4)
 - KJFK ROBER approach (2)

Data Sets...

Turn to Final Overview — measures used as features for anomaly detection

Turn To Final									
		Runway 💌			MaxOverShoot(ft) •	Dist@Int ▼	Angle@Intercept ▼	Speed@Int	▼ Total
∃11/03/2009 00:23:22	■ASQ5529	∃26R	□ CRJ2	∃ATL	∃3482	∃12.32	⊡60	213	1
					Sherlock			port D	ata
					Turn-to-final (TTF)				
Direction of flight					Overshoots				
					Final approach path intercept				
		Max O	vershoot	An	gle at Intercept		round Speed / ttitude at intercep	ot .	
	Arri Rur	val	FAI — Distan		Green = speed <1 ntercept 12	80			ERC
								SHER	Leck

Methodologies Employed

Iterative Development, Analysis, Review

~Quarterly Frequency

SME Review Tool

- Automatically makes videos of top "X" anomalous flights
- Merges and syncs voice recording (when available)
- Allows for quick SME review
- Facilitates supervised learning

Overnight Update in Development System (current)

To be implemented in NASA systems...

Integration with NASA Systems

Integration Overview

- Integration with NASA systems includes 2 phases:
 - Phase I Migrate anomaly detection processing to Sherlock ATM Data Warehouse Big Data computing cluster
 - 2. Phase II Integrate with ATM-X testbed by producing an Anomaly Detection Service
- Advantages to this approach:
 - Sherlock provides access to the data (IFF/RD/ and TTF)
 - Leverages Sherlock existing Big Data computing assets
 - Integration is internal inside NASA programs (no need for SAA or other external access mechanism)

Phase I: Migration of Anomaly Detection to Sherlock

Migration of Anomaly Detection to Sherlock

Sherlock Big Data System

- SuperMicro Engineered System
- Cloudera Hadoop stack
- 42U rack
- Total of 480 CPU Cores, 1752 TB Storage
- 1 Management Node
- 3 Name Nodes (Dual 6 Core, 256 GB RAM each)
- 36 Data Nodes (Dual 6 Core, 128 GB RAM each)

Phase II: Integration with ATM-X Testbed Architecture

Implementation Schedule

- ▶ Phase I 1st Quarter 2019
- ▶ Phase II 2nd Quarter 2019
- Government shutdowns could affect the overall schedule

Anomaly Detection Updates

Anomaly Detection Overview

- Compute nine anomaly indicators:
 (those in bold developed under NASA Phase 2 SBIR)
 - Heading Trajectory k-Nearest Neighbor
 - Altitude Trajectory k-Nearest Neighbor
 - Angle and Speed at Intercept
 - Maximum Overshoot
 - Glide Path Angle at Intercept (Altitude divided by Dist. at Intercept)
 - Final Approach Positions (unusual locations 1-5nm before runway)
 - Overtake Potential (one aircraft closing in on another near runway)
 - Aircraft Energy (unusually high or low specific energy on approach)
- Normalcy Score Broker (NSB) combines indicators into single anomaly score to identify flights that are outliers in one or more indicators

Aircraft Energy Anomalies

- Identifies flights with unusual specific energy on approach
 - Too high & fast or low & slow
 - Specific energy $\frac{1}{2}v^2 + gh$
 - For velocity v and altitude h
- Measured over approach's final ~15 nm
 - Sample points every 0.05 nm along typical approach path
 - Velocities and positions smoothed using improved Kalman filter
- Energy paths have multiple clusters (see figure, right)
 - Different approaches & runways

JFK 31R energy points individually colored by normalcy over 2018

Aircraft Energy Anomalies

- Energy tracks compared to find anomalies
- Energies normalized to z-scores at each sampled distance
 - Enables comparison of scores across distances with different variances
- Use k-Nearest Neighbor (k-NN) to identify anomalous energy tracks
 - Compare tracks with L1 norm
 - Use exponential weighted average over k=0.5% nearest neighbor distances

2018 JFK 31R flight energy tracks colored by Aircraft Energy indicator

Combined Anomaly Scores

- Normalcy Score Broker (NSB) combines multiple anomaly indicators into single score
- Combined score is proportion of flights at least as anomalous in every indicator
 - Joint CDF measures mass of distribution in upper right
- Ex: Starred flight's score is proportion of flights in red rectangle (including self)
 - Only 0.1% of flights have both indicator scores at least as anomalous as the starred flight

NSB Score Ties

- Normalcy Score Broker (NSB) can result in many ties for the most anomalous combined score
 - More indicators (higher dimensions) generally leads to more ties
 - Negatively correlated indicators lead to more ties
- Some nearby flights of interest fall in the rankings

Smoothed NSB Scores

- Break ties and elevate nearby flights by kernel-smoothing the "mass" of each flight
 - First, convert each indicator into a percentile value (does not change ordering and therefore NSB score remains)

 Then, replace the point-mass of each flight with a multivariate beta distribution

- Example (at right):
 - A flight with indicator percentiles 0.75, 0.99
 - Multivariate beta distribution smooths flight's mass over region [0, 1]²
 - Example uses exaggerated smoothing bandwidth for improved visualization
- Smoothed NSB score computes total mass in upper-right of the flight's indicator percentiles

Smoothed NSB Score Results: 8 Indicators

- Smoothed scores more accurately reflect the underlying joint probability distribution
- Ties in anomaly tail are eliminated
- Flights previously tied for second place are promoted
 - Receive scores similar to "nearby" flights

Smoothed NSB Score Results: 2 Indicator Example

"Nearby" flights receive more similar scores (subtle)

Analysis of Unstructured Data (ATC Voice)

Background & Objectives

- ATC voice data from LiveATC.com records the message exchange between the pilots and the controllers
- Incorporate ATC voice metrics as additional anomaly detection indicators, and explore the correlation between voice features and flight traffic
- Initial trial of speech transcription has poor performance due to lack of training dataset (corpus)
- Instead, spectrum analysis algorithm was applied to extract representative features from the ATC audio data

Methodology – Framework

Digital Signal Processing

Digital Signal Processing Overview

Original signal – time domain samples from ATC tower audio

Spectrogram (STFT)

Spectrogram – converting signals into (frequency, time, energy) tuples.

Voice Activity Detection (thresholding)

Feature map – Each frame is a vector of features for a short time period (e.g., 20 ms)

Segmentation (BIC method)

Segmentation – Each **segment** contains only one speaker

Flight-Voice Features

Flight-Voice Feature Analysis

- Three key timestamps identified for each flight operation:
 - Corner post passing time
 - Event time: time to pass intercept
 - Landing time: time to land
- Extract flight-level features from voice data for every flight:
 - TRACON channel: from CP time to event time.
 - Tower channel: from event time to landing time.
- Case study for one specific anomalous flight

Flight-Voice Feature Analysis

Approach

- $\circ~$ The total number of events per unit time within a flight time window, λ
- The average duration (μ) of voice activities (events) within a flight time window

Calculation

- N_{tracon} = number of voice communications in time interval $[t_1, t_2]$.
- N_{twr} = number of voice communications in time interval $[t_2, t_3]$.

$$\lambda_{tracon} = \frac{N_{tracon}}{t_2 - t_1}; \lambda_{twr} = \frac{N_{twr}}{t_3 - t_2}$$

$$\mu_{tracon} = \frac{\sum_{i}^{N_{tracon}} T_i}{N_{tracon}}; \mu_{twr} = \frac{\sum_{i}^{N_{twr}} T_i}{N_{twr}}$$

Flight-Voice Feature Analysis

Calculation

- Summarize voice energy statistics every second.
 - Max, avg, 75q, 90q of energy statistics for every second (~25 frames).
 - Each voice tape will have a feature matrix with dimension (1800, 4).
- Map every flight's time windows [t₁, t₂] and [t₂, t₃] to feature matrix. Compute:
 - Average audio energy within the time window.
 - Max, min, 25q, 50q, 75q, 90q, avg of the within-second-avg.
 - Max, min, 25q, 50q, 75q, 90q, avg of the within-second-max.
 - Max, min, 25q, 50q, 75q, 90q, avg of the within-second-75q.
 - Max, min, 25q, 50q, 75q, 90q, avg of the within-second-90q.

Pilot-Controller Identification

Pilot-Controller Identification

Labeling

- Use the segmentation results (small λ) to aid us listening to audios.
- For each segment, assign a label as either pilot (1) or controller (2). All nonspeech segments will be assigned as 0.
- For each labeled segment, assign its label to all frames in the segment.

Segments			Seg	mer	nt 1:	cont	trolle	er (2)			Se	gme	nt 2	: pilc	t (1)				5	Silen	ce ((0)		S	egm	ent 4	4: cc	ntro	ller ((2)	
Frames	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	0	0	0	0	2	2	2	2	2	2	2	2	2

All frames belonging to segment 1 will be labeled as controller

Build Classifier

- Training
 - Build a classifier to predict the label for each frame, using 123 dimensional features (filter bank and FOS and SOS).
- Testing
 - Predict the label for each frame of the audio clip(s).
 - Apply segmentation algorithm to audio clip(s).
 - For each segment, the final label will be the majority of the frames' label.

Segment 1	Segment 2	Silence (by VAD)	Segment 4			
2 2 1 1 2 2 1 1 2 2 2 2	2 2 1 1 1 1 1 2	0 0 0 0 0 1	2 2 2 2 1 2 2 2			
2: controller	1: pilot	0: vacant	2: controller			

Pilot-Controller Identification

- Manually label 3 audio clips, each of which covers a 30-minute ATC tower communication.
- Select two labeled audio clip (4/28/2017 1830 Z & 4/28/2017 1800 Z) as training set and one (5/26/2017 2030 Z) as testing set.

Classifier	Frame-wise accuracy	Segment-wise accuracy	Pros	Cons		
Logistic regression	75.0%	75%	Easy to train	Loss of temporal relations Hard to update		
Linear SVM	75.3%	74%				
BiRNN	87.3%	78%	Easy to update with new data Capable of transfer learning (e.g., speech to text)	Hard to train		

Further experiments are required to validate our results – coincidently, there is a woman controller in both the training audio clips (two on 4/24/2017) and testing audio (one on 5/26/2017).

Channel Occupancy Analysis

Channel Occupancy Analysis

Data matching for each 5-minute time period:

Channel Occupancy Analysis

 (Constrained) Active Rate: the percentage of time a communication channel is utilized within time interval

Result

- Right censored threshold limit for ATC voice communication is 60.69%
- Arrivals have stronger impact on the active rate and the leading effect dissipates over time
- Higher visibility decreases active rate
- Positive daytime effect
- Stronger winds lead to more voice activities. Tailwind speed has the strongest impact
- Flights with high NSB scores require more communication
- Runway configuration fixed effect increase the active rate as the runway utilization decreases

Incremental Effect of Active Rate with one flight operation adding in different period

Analysis of Go-arounds

- Deeper look into special anomaly events, such as go-arounds
- Study period: 2018/04/01 2018/09/30 (JFK), with 445 goarounds and 101,932 non go-around flights
- Predict Go-Arounds based on features selected from PCA dedicating to analyze both quantitative and qualitative variables (Pagès 2004)
- Estimate logistic regression model
 - Dependent variable: whether a flight is a go-around
 - Independent variables: principal components formed by features
- Varimax Rotation is done for interpreting the effects of each components
- Quantify the contributions of causal factors

Intercept with final approach features

- DIST_AT_INT, ANGLE_AT_INT, INT_RUNWAY_DIST, INT_TYPE = Int Outside Gate have positive impact on go-around probability
- FinalApproachCylinder(-), GlideslopeAtIntercept(-), INT_TYPE=Int Inside FAF have negative impact on go-around probability
- ALT_DIFF_AT_INT, MAX_VERT_FT, MAX_HORIZ_FT have extremely small positive impact on go-around probability (coef. ≈ 0)

- Separation Feature
 - Incremental effect of go-arounds with 1nm adding in different segments

(nautical mile)

0	Overtake(+)_1	1	Overtake(+)_2	2.5	Overtake(+)_3	5	Overtake(+)_4	8	Overtake(+)_5
	-4.82		-0.94		-0.07		-0.03		-0.00

- The difference between theoretical (required) separation and real separation increases the probability of go-arounds
 - Theoretical separation: FAA Wake Separation Standards based on weight class pair
 - Real separation: for each aircraft leading-trailing pair, resample and interpolate the time series of positions (latitude, longitude, altitude), then get the minimum separation between two trajectory segments

Visibility Feature

 Incremental effect of go-arounds with 1nm adding in different segments
 (statute mile)

0	VISIBLE_1	3	VISIBLE_2	5	VISIBLE_3	10
	-0.21		-0.11		-0.10	

- Go-arounds less likely under visual conditions
- Weight Class

Variable	Coef.
WC_LEAD=F	-
WC_LEAD=H	0.43
WC_LEAD=L	-
WC_LEAD=N	1.08
WC_LEAD=S	-1.01

Variable	Coef.				
WC_TRA=F	-0.46				
WC_TRA=H	0.62				
WC_TRA=L	-0.29				
WC_TRA=N	-				
WC_TRA=S	-2.95				

Winds

Strong tailwind increases the probability of go-arounds

Agglomeration Effect

- The number of go-arounds in the 30-minute window, surrounding the landing time of aircraft, has strong impact in increasing goarounds
- The time interval between the final approach start time and the closest go-around time, in minutes, weakly decreases the probability of go-arounds
- The number of aircrafts intending to arrive for the 15-minute period has positive impact on go-around probability

Next Steps

Next Steps

- Complete Development of Anomaly Detection System (Version 1.0)
 - Additional SME involvement through review of energy and voice metric features
 - Finalize voice metrics to include in anomaly detection
 - SME review of high emery feature outliers
 - Develop initial go-around prediction model
- Implement Phase I Migrate anomaly detection to Sherlock
 - Create one year training set for anomaly detection model
 - Deploy anomaly detection software to Sherlock Big Data System
 - Configure data flows for overnight update
 - V&V of data
- Prepare for Phase II Integrate with ATM-X Testbed
 - Meetings with ATM-X testbed personnel
 - Determine best design for testbed plug in adapter and Webservice
 - Configure testbed connection
 - V&V of data

