

An Econometric Model of Flight En Route Inefficiency

Yulin Liu, Mark Hansen

Institute of Transportation Studies

University of California, Berkeley

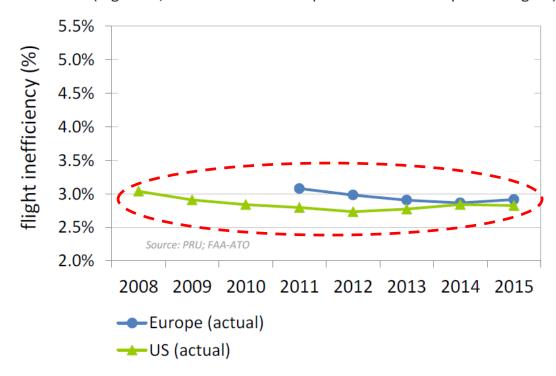
Jan 14th, 2019

Outline

- Introduction
- Data Sources and Data Exploration
- Methodology
- Contributions and Ongoing Research

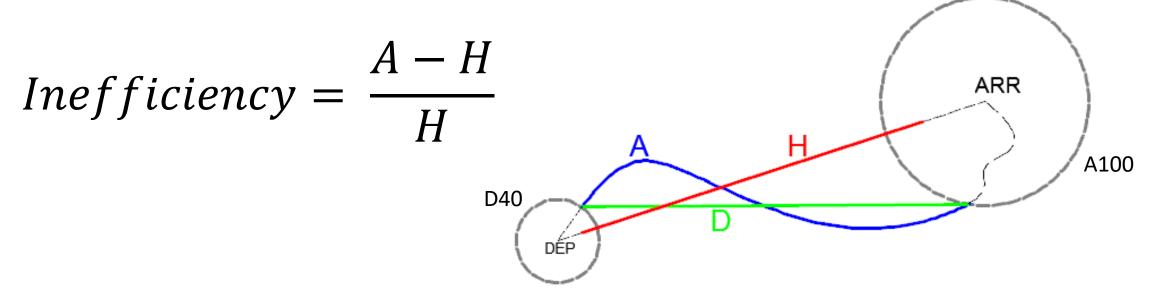
Motivations (I)

- FAA and Eurocontrol have published metrics to evaluate flight en route performance.
- It is central to many benefit in aviation community
 - Fuel efficiency
 - Environmental assessment
 - Workload evaluation

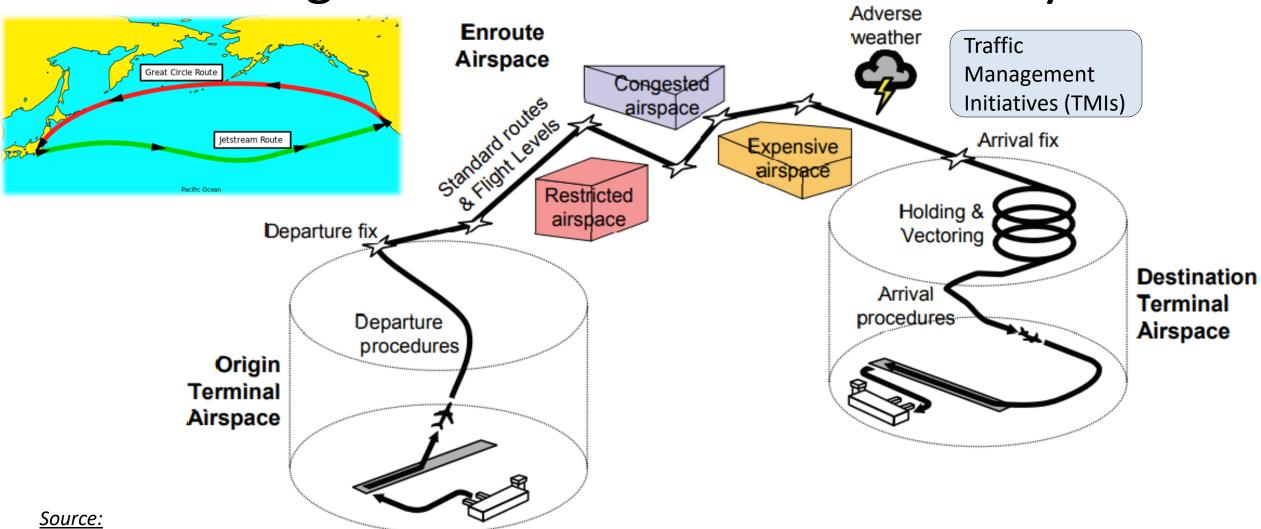


Motivations (II)

- Limited understanding of the causalities behind the inefficiency.
- Evolution of en route inefficiency what/who accounts for the change?
 - ANSP
 - Airline
 - Adverse weather
- Can we do something to mitigate the inefficiency?

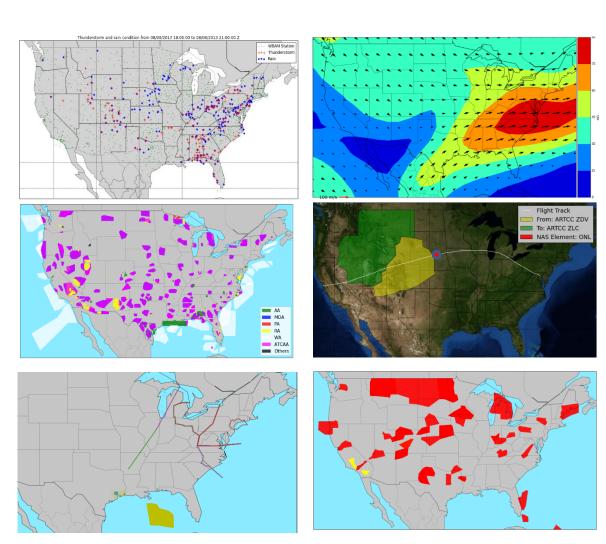

<u>Evolution of horizontal en-route flight efficiency</u> (flights to/from the main 34 airports within the respective region)

Background – En Route Inefficiency

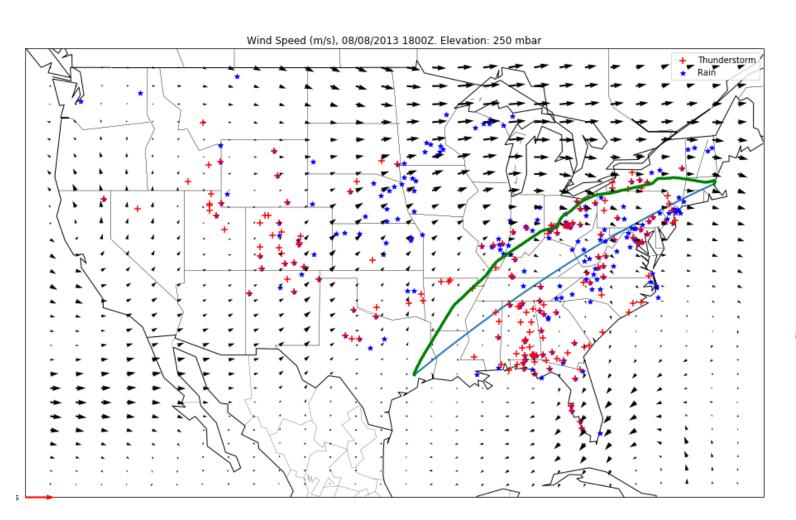

- A: Actual flown distance from exit point to entry point.
- D: Great circle distance between terminal entry and exit point.
- *H*: Achieved distance "projection" of D onto great circle route between departure and arrival airport.

Sources:

Background – Sources of Inefficiency


https://en.wikipedia.org/wiki/Jet stream

Background – Sources of Inefficiency


- Sources of Interest
 - Meteorological conditions
 - Convective weather
 - Wind
 - Controlled inputs
 - Special Activity Airspace (SAA)
 - Miles-In-Trail (MIT)
 - Airspace Flow Program (AFP)
 - Monitor Alert (MA)

Research Goal

Why not great circle?

Overview

- Propose a trajectory synthesis algorithm to create nominal route.
- Offer a tree-based matching algorithm to efficiently match flight trajectories with high-fidelity spatiotemporal data.
- Estimate an econometric model to quantitatively understand how different factors affect flight en route inefficiency, with an emphasis of cross-sectional effect.

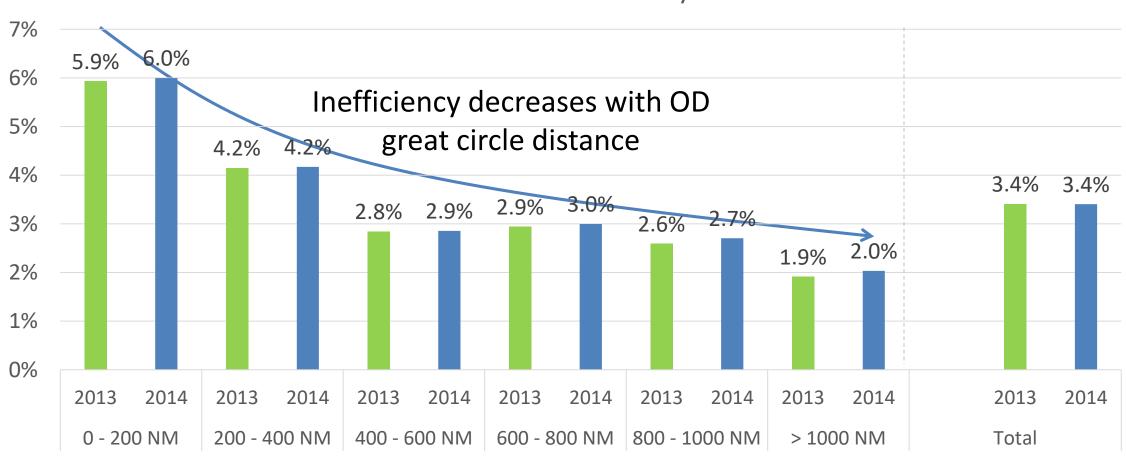
Outline

- Introduction
- Data Sources and Summary Statistics
- Aggregate Model
- Flight Level Model
- Contributions and Ongoing Research

Data Sources

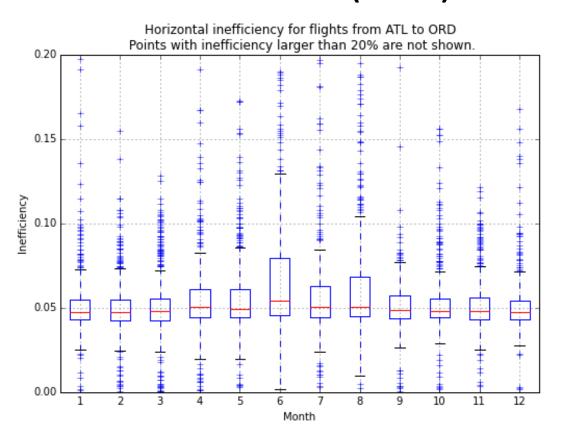
- FAA Traffic Flow Management System (TFMS)
 - Inefficiency dataset: flight inefficiency records.
 - Flight track dataset: flight track records.
- FAA National Traffic Management Log (NTML)
 - Miles-In-Trail (MIT) dataset
 - Airspace Flow Program (AFP) dataset
 - Monitor Alert (MA) dataset

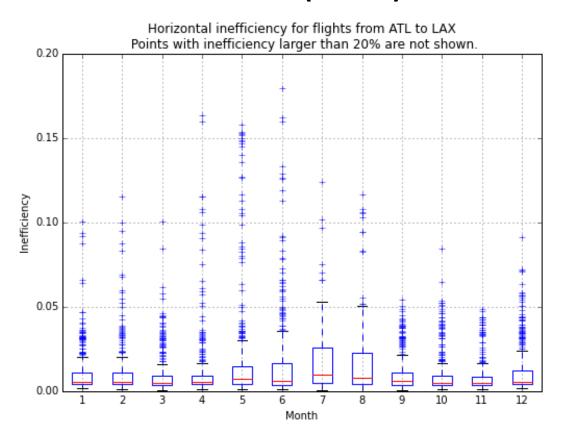
Where, when, how those "initiatives" were "implemented"


- NASA Sherlock Data Warehouse
 - Special Activity Airspace (SAA) dataset: SAA start/stop time
- National Oceanic and Atmospheric Administration (NOAA)
 - Convective weather dataset: ground based observations
 - Forecast wind dataset: raster wind data with fixed geospatial grids.

En Route Inefficiency vs Great Circle Distance

En Route Inefficiency

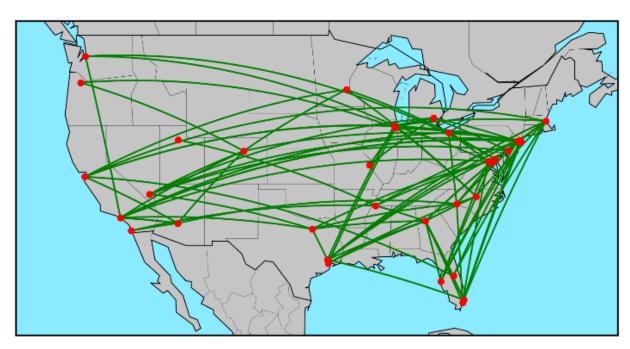


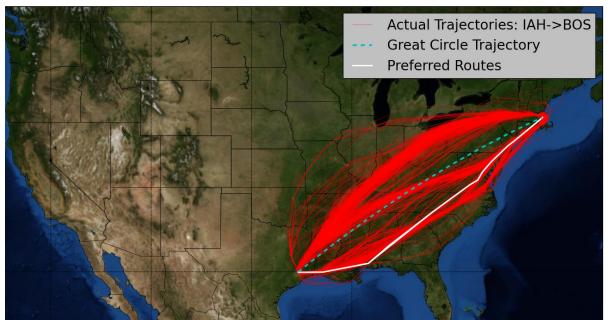


Inefficiencies for Representative Airport Pairs (2013)

ATL to ORD (6.86%)

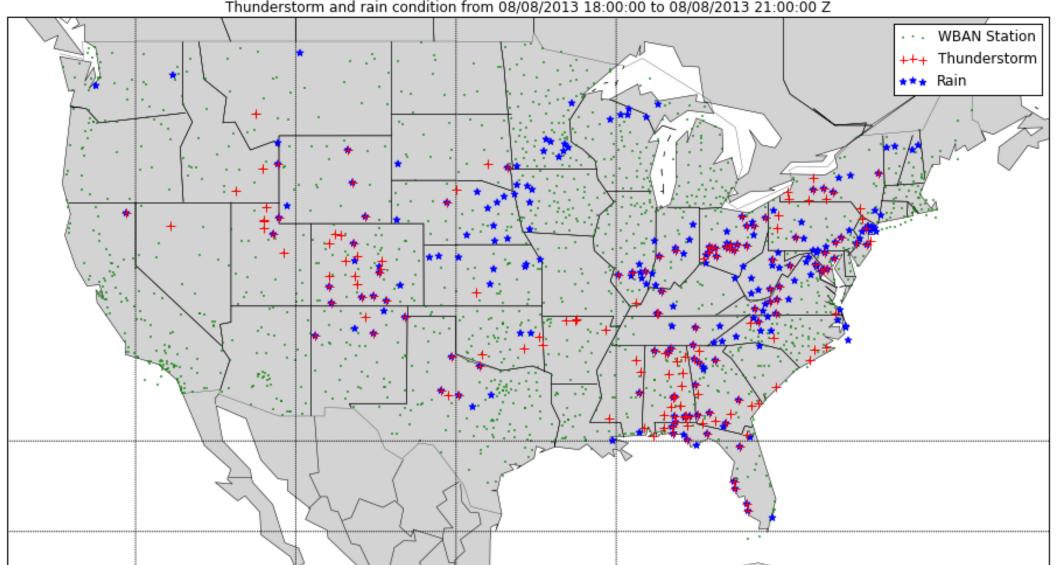
ATL to LAX (1.28%)



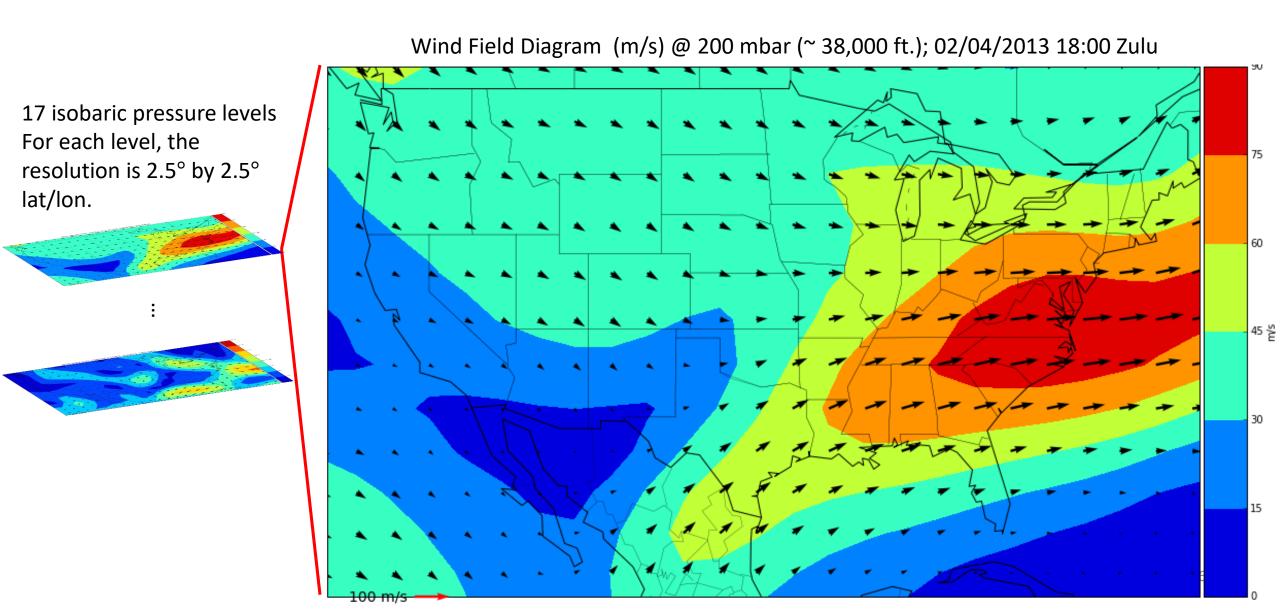


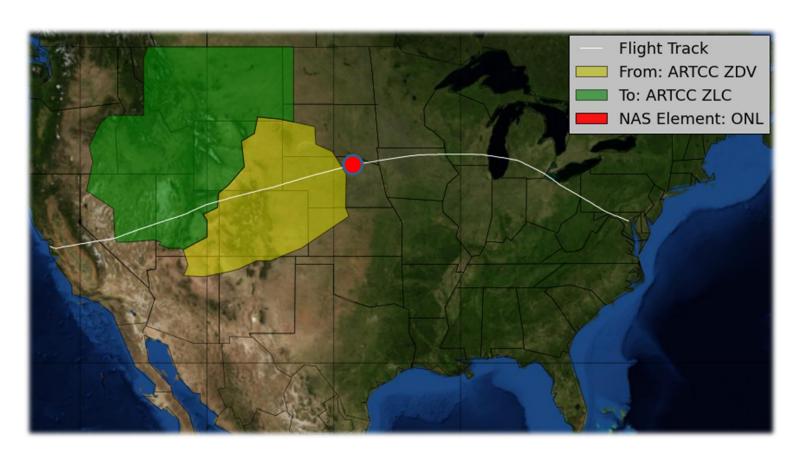
Flight Track Data

97 US Major Airport Pairs, 436830 flights IAH → BOS (2013)



Convective Weather Data


Thunderstorm and rain condition from 08/08/2013 18:00:00 to 08/08/2013 21:00:00 Z


Forecast Wind Data

Miles-In-Trail (MIT) Data

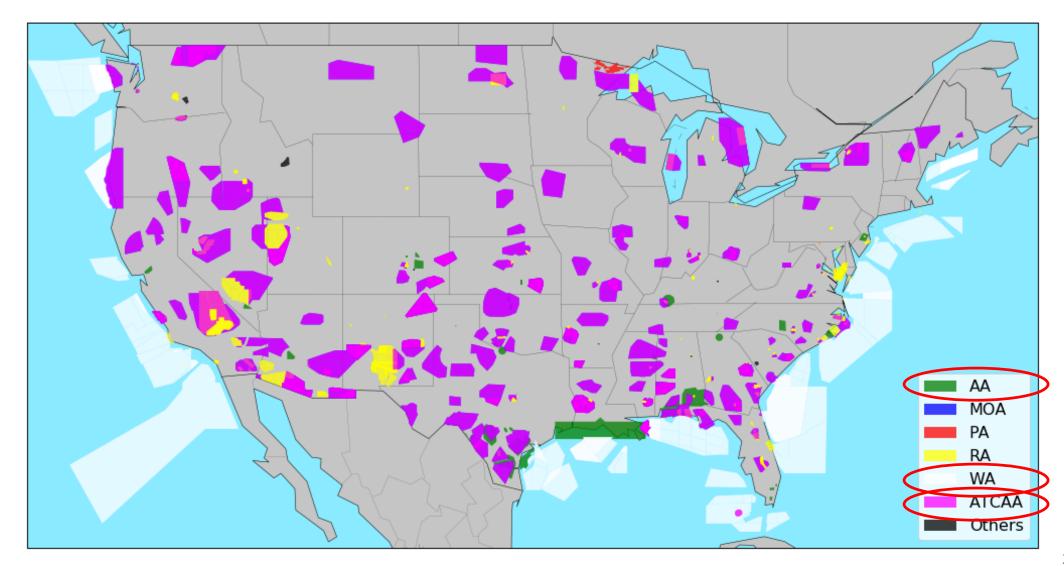
ZDV is trying to protect **ZLC**, which is overloaded, by providing a MIT (e.g., 15 miles) to separate aircrafts through the Navaid **ONL**.

- Miles-in-trail specifies the minimal required distance between two consecutive aircrafts.
- Apportion traffic into a manageable flow.

Airspace Flow Program (AFP) Data

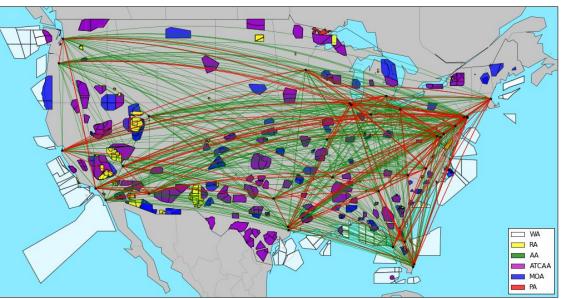
- AFP identifies constrained areas and assigns expected departure time (EDT) for flights entering the area.
- Flights could either route out of the constrained area or accept the EDT and its attendant ground delay.

Monitor Alert (MA) Data



- MA alerts sector personnel when the forecast flight demand exceeds a pre-defined value.
- Red: demand exceeds the capacity.
- Yellow: demand approaches the capacity.

Special Activity Area (SAA) Data

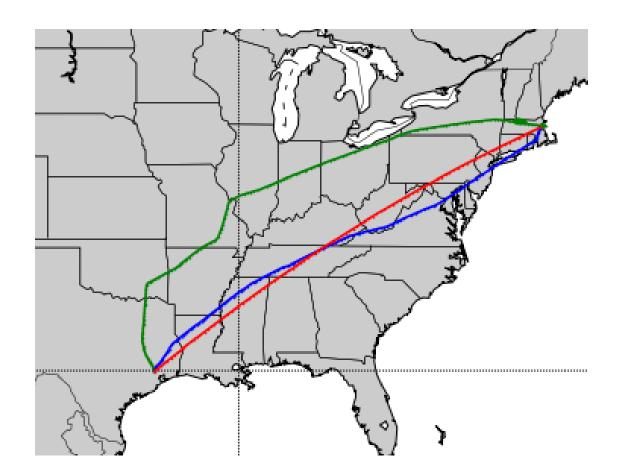


Special Activity Area Data (cont.)

Flights barely cross the SAA

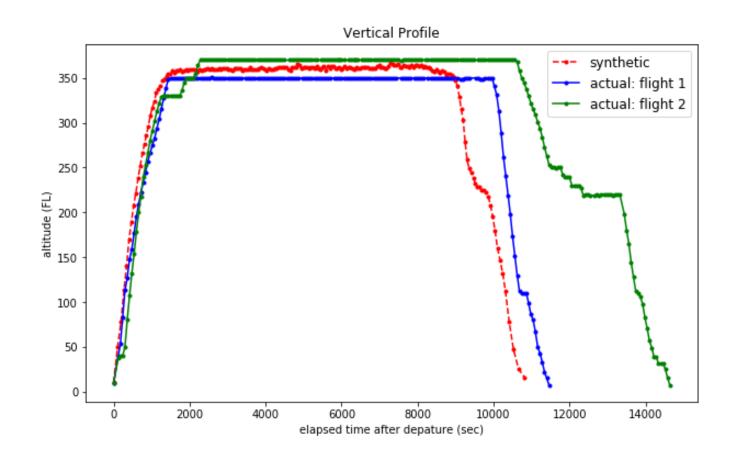
Direct routes crosses the SAA frequently

Methodology


- Inefficiency is measured by the ground distance of a flight trajectory relative to the "great circle distance".
- However the realized flight trajectory and the corresponding inefficiency are the results of weather and air traffic control.
- In other word, it is the weather/air traffic control/other inputs on the most efficient route that "causes" the actual flight route and inefficiency.
- Thus, to quantitatively understand how those factors affect inefficiency, we need to match them with some synthetic, yet representative, routes.

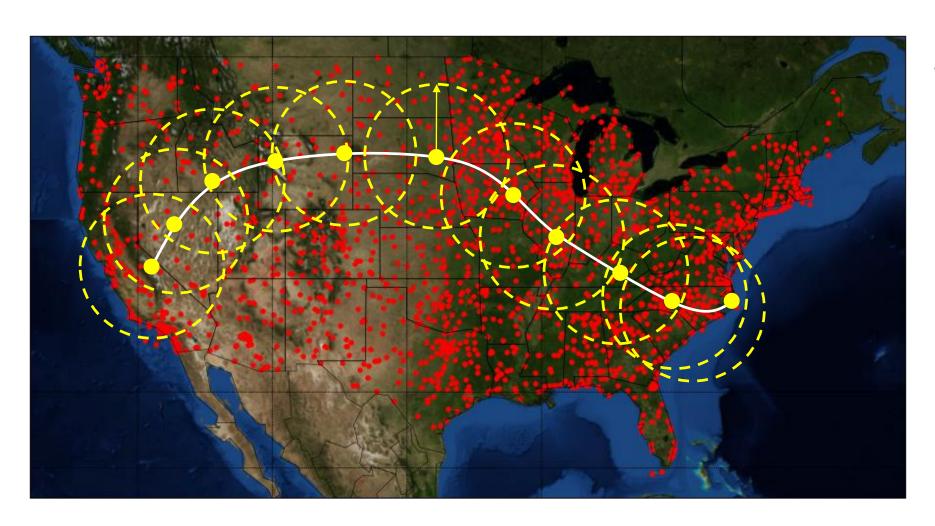
Generating Synthetic Great Circle Route

- Synthetic Great Circle Route
 - Easy to handle.
 - Computational tractable in large scale analysis.
- Horizontal Profile
 - Equally spaced waypoints
- Vertical and Time Profile
 - How to ensure an reasonable altitude and time profile so that they won't violate the basic law of kinematics?



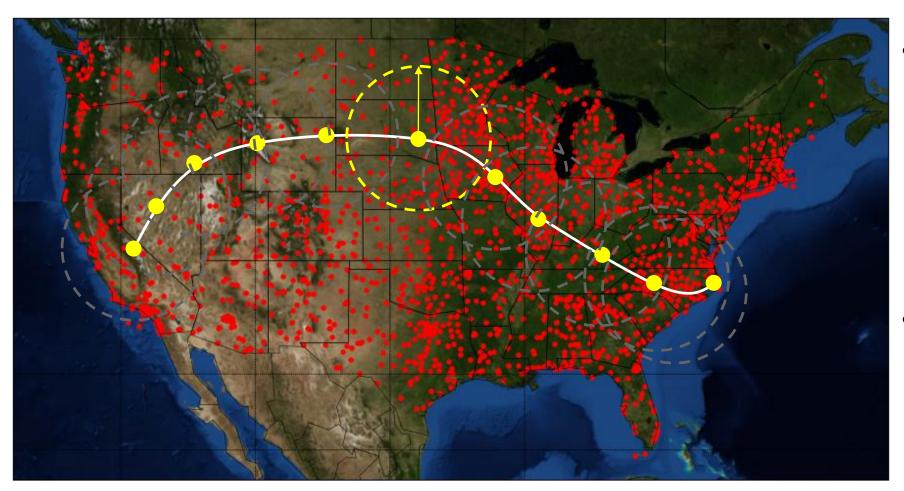
Generating Synthetic Great Circle Route

- Vertical and Time Profile
 - Flight-track-based approximation.
 - Nearest neighbor and weighted average.


Matching Algorithm

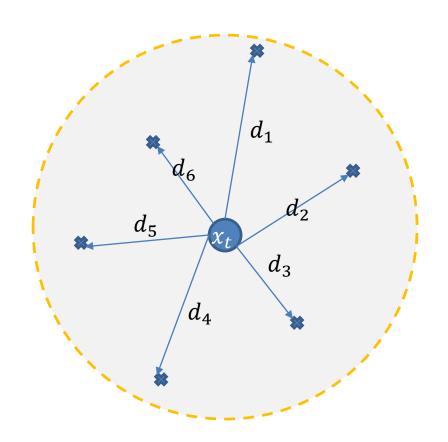
- We use the nominal route, or the synthetic great circle route, as the basis to match with different factors – weather, wind, MIT, AFP, MA, SAA.
- For each flight, we assume it will fly the nominal route, which is the hypothetical shortest route. Thus, we characterize the conditions a given flight **would have** encountered if it had flown the nominal route, assuming its **actual departure time**.

Matching – Convective Weather



 For each track point on the trajectory, find all the stations within a circle with radius r (150 nmi).

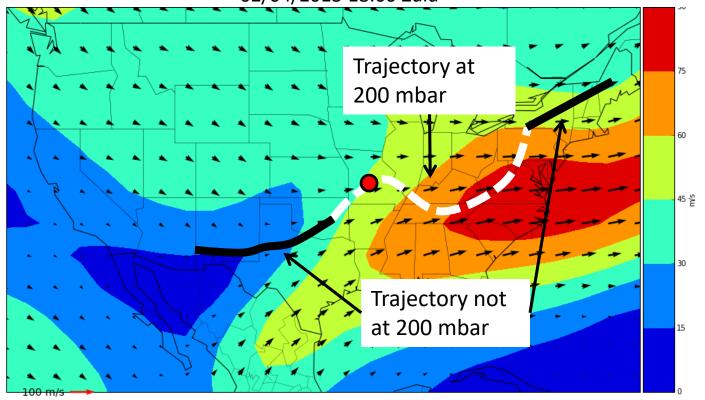
Matching – Convective Weather



- Weighted average the weather variable (binary) for stations within the circle, and the weight is the proportional to the inverse of the distance.
- Metric: average of the weather exposure for all track points along the route.

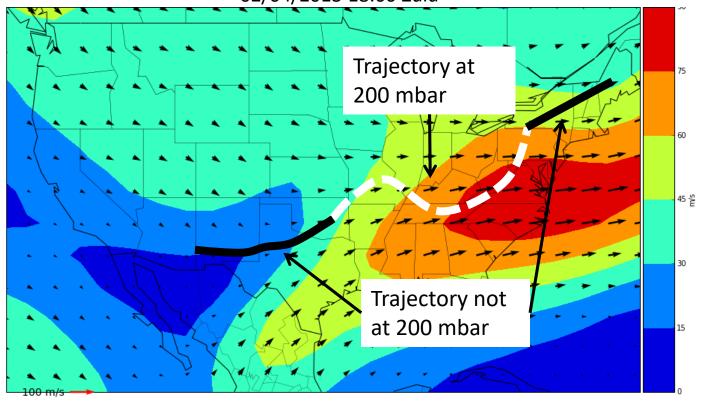
Matching – Convective Weather

$$Wx_{t} = \sum_{i} I_{i} \cdot \frac{d_{i}}{\sum_{j} d_{j}}$$
$$Wx = \frac{1}{T} \cdot \sum_{t} Wx_{t}$$


- Weighted average the weather variable (binary) for stations within the circle, and the weight is the proportional to the inverse of the distance.
- Metric: average of the weather exposure for all track points along the route.

Matching – Wind

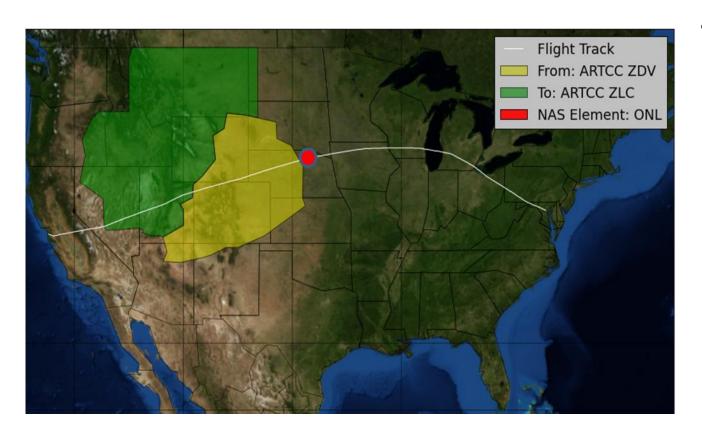
Wind Field Diagram (m/s) @ 200 mbar (~ 38,000 ft.) 02/04/2013 18:00 Zulu


- For each track point, find the nearest 4d reference point of the wind data file
- Assign the wind speed (vertical and horizontal) of the nearest grid to the track point

Matching – Wind

Wind Field Diagram (m/s) @ 200 mbar (~ 38,000 ft.) 02/04/2013 18:00 Zulu

- Calculate the headwind/tailwind speed for each track point, based on heading derived from previous track point
- Metrics
 - Equivalent still air distance
 - Average wind speed along the route.


Matching – Trick of Trees

- Weather and wind datasets
 - High-dimension spatiotemporal raster
 - Fixed temporal resolution
 - Fixed geospatial grids
- Static spatial and temporal k-d trees
 - Query and vectorization
 - Batch-mode operation

Matching – MIT/AFP/MA/SAA

- A given nominal route, with adjusted departure time, is assumed to be affected by a MIT/AFP/MA/SAA if:
 - It crosses the facilities
 - Its crossing time is within the time of effect
 - Its crossing altitude is covered by the restriction

Metric	Description				
TS	Thunderstorm exposure (in percentage)				
Squall	Squall exposure (in percentage)				
AvgWindSpd	Average wind speed (positive if tailwind and negative if headwind) along the				
	great circle route (in 100 m/s)				
WindDist	Distance traveled with respect to air (equivalent still air distance, in 1000 nmi)				
NumMIT	Number of MIT crossed				
MaxMITSTR	Maximal MIT stringency among all crossed MITs (in $100\ mile\cdot hr$)				
NumAFP	Number of AFP crossed				
MaxAFPDly	Maximal AFP assigned delay among all crossed AFP (in hours)				
MaxAFPArr	Maximal AFP acceptance rate among all crossed AFP (in 100 per hour)				
NumSAA	Number of SAA crossed				
MaxSAAT	Maximal transverse time within crossed SAA (in hours)				
NumMARed	Number of red MA crossed				
NumMAYel	Number of yellow MA crossed				
MaxMAT	Maximal transverse time within crossed MA (in hours)				

Metric	Description				
TS	Thunderstorm exposure (in percentage)				
Squall	Squall exposure (in percentage)				
AvgWindSpd	Average wind speed (positive if tailwind and negative if headwind) along the				
	great circle route (in 100 m/s)				
WindDist	Distance traveled with respect to air (equivalent still air distance, in 1000 nmi)				
NumMIT	Number of MIT crossed				
MaxMITSTR	Maximal MIT stringency among all crossed MITs (in $100\ mile\cdot hr$)				
NumAFP	Number of AFP crossed				
MaxAFPDly	Maximal AFP assigned delay among all crossed AFP (in hours)				
MaxAFPArr	Maximal AFP acceptance rate among all crossed AFP (in 100 per hour)				
NumSAA	Number of SAA crossed				
MaxSAAT	Maximal transverse time within crossed SAA (in hours)				
NumMARed	Number of red MA crossed				
NumMAYel	Number of yellow MA crossed				
MaxMAT	Maximal transverse time within crossed MA (in hours)				

Metric	Description				
TS	Thunderstorm exposure (in percentage)				
Squall	Squall exposure (in percentage)				
AvgWindSpd	Average wind speed (positive if tailwind and negative if headwind) along the				
	great circle route (in 100 m/s)				
WindDist	Distance traveled with respect to air (equivalent still air distance, in 1000 nmi)				
NumMIT	Number of MIT crossed				
MaxMITSTR	Maximal MIT stringency among all crossed MITs (in $100\ mile\cdot hr$)				
NumAFP	Number of AFP crossed				
MaxAFPDly	Maximal AFP assigned delay among all crossed AFP (in hours)				
MaxAFPArr	Maximal AFP acceptance rate among all crossed AFP (in 100 per hour)				
NumSAA	Number of SAA crossed				
MaxSAAT	Maximal transverse time within crossed SAA (in hours)				
NumMARed	Number of red MA crossed				
NumMAYel	Number of yellow MA crossed				
MaxMAT	Maximal transverse time within crossed MA (in hours)				

Metric	Description				
TS	Thunderstorm exposure (in percentage)				
Squall	Squall exposure (in percentage)				
AvgWindSpd	Average wind speed (positive if tailwind and negative if headwind) along the				
	great circle route (in 100 m/s)				
WindDist	Distance traveled with respect to air (equivalent still air distance, in 1000 nmi)				
NumMIT	Number of MIT crossed				
MaxMITSTR	Maximal MIT stringency among all crossed MITs (in $100\ mile\cdot hr$)				
NumAFP	Number of AFP crossed				
MaxAFPDly	Maximal AFP assigned delay among all crossed AFP (in hours)				
MaxAFPArr	Maximal AFP acceptance rate among all crossed AFP (in 100 per hour)				
NumSAA	Number of SAA crossed				
MaxSAAT	Maximal transverse time within crossed SAA (in hours)				
NumMARed	Number of red MA crossed				
NumMAYel	Number of yellow MA crossed				
MaxMAT	Maximal transverse time within crossed MA (in hours)				

Metric	Description				
TS	Thunderstorm exposure (in percentage)				
Squall	Squall exposure (in percentage)				
AvgWindSpd	Average wind speed (positive if tailwind and negative if headwind) along the				
	great circle route (in 100 m/s)				
WindDist	Distance traveled with respect to air (equivalent still air distance, in 1000 nmi)				
NumMIT	Number of MIT crossed				
MaxMITSTR	Maximal MIT stringency among all crossed MITs (in $100\ mile\cdot hr$)				
NumAFP	Number of AFP crossed				
MaxAFPDly	Maximal AFP assigned delay among all crossed AFP (in hours)				
MaxAFPArr	Maximal AFP acceptance rate among all crossed AFP (in 100 per hour)				
NumSAA	Number of SAA crossed				
MaxSAAT	Maximal transverse time within crossed SAA (in hours)				
NumMARed	Number of red MA crossed				
NumMAYel	Number of yellow MA crossed				
MaxMAT	Maximal transverse time within crossed MA (in hours)				

Metric	Description	sign		
TS	Thunderstorm exposure (in percentage)			
Squall	Squall exposure (in percentage)			
AvgWindSpd	Average wind speed (positive if tailwind and negative if headwind) along the	-		
	great circle route (in 100 m/s)			
WindDist	Distance traveled with respect to air (equivalent still air distance, in 1000 nmi)	+		
NumMIT	Number of MIT crossed +			
MaxMITSTR	Maximal MIT stringency among all crossed MITs (in $100\ mile\cdot hr$) +			
NumAFP	Number of AFP crossed	+		
MaxAFPDly	Maximal AFP assigned delay among all crossed AFP (in hours)			
MaxAFPArr	Maximal AFP acceptance rate among all crossed AFP (in 100 per hour)	-		
NumSAA	Number of SAA crossed +			
MaxSAAT	Maximal transverse time within crossed SAA (in hours) +			
NumMARed	Number of red MA crossed	+		
NumMAYel	Number of yellow MA crossed	+		
MaxMAT	Maximal transverse time within crossed MA (in hours)	+ 38		

Model Specifications

Metric	sign
TS	+
Squall	+
AvgWindSpd	-
WindDist	+
NumMIT	+
MaxMITSTR	+
NumAFP	+
MaxAFPDly	+
MaxAFPArr	-
NumSAA	+
MaxSAAT	+
NumMARed	+
NumMAYel	+
MaxMAT	+

- Dependent variable: flight en route inefficiency
- Additional explanatory variables
 - Achieved distance (benchmark distance)
- $\frac{A-H}{H}$

- Airport-pair fixed effect
- Specifications
 - Model I: full model
 - Model II: reduced model
 - Model III: omit achieved distance effect
 - Model IV: omit airport-pair fixed effect

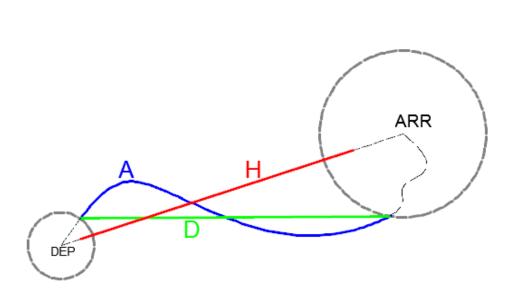
Estimation Results – Weather

** • • • •	Models			
Variable		Est. /	(Std.)	
	Model I	Model II	Model III	Model IV
constant	-			3.410***
TS	0.103***	0.109***	0.253***	0.819***
Squall	1.823 (1.377)	-		-
AvgWindSpd	-1.877*** (0.441)	-1.880*** (0.433)	-1.945*** (0.596)	-0.168 (0.113)
WindDist	6.775*** (1.415)	6.817*** (1.390)	6.247*** (1.872)	1.195*** (0.170)

- Positive TS → flights take detour to avoid weather incidences.
- Model II and III report smaller estimates of TS – some airport pairs inherently have more convections.
- Higher average tailwind speed and shorter wind distance reduce the inefficiency – flights tend to "chase" a more favorable wind condition.

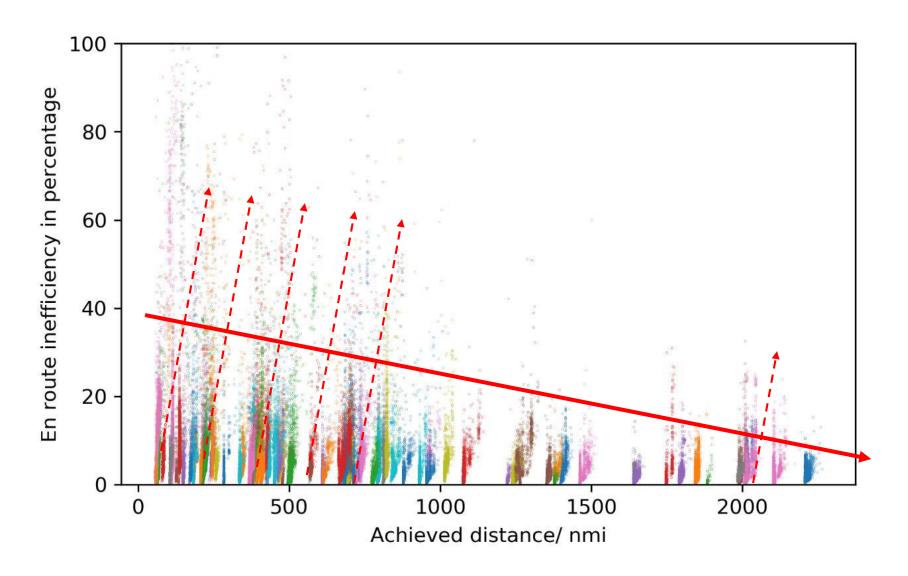
Estimation Results – ATC

Variable	Models Est. / (Std.)			
, variation	Model I	Model II	Model III	Model IV
NumMIT	0.148***	0.148***	0.314***	0.185*** (0.026)
MaxMITSTR	0.110*** (0.024)	0.110***	0.239***	0.244*** (0.040)
NumAFP	0.232 (2.004)	0.394***	1.078***	1.121***
NumSAA	-0.003 (0.010)	-	-	-
MaxSAAT	2.666****	2.587*** (0.183)	2.816*** (0.242)	2.981*** (0.134)
NumMARed	-0.025 (0.018)	-	-	-
NumMAYel	-0.022 (0.028)	-	-	-
MaxMAT	0.086 (0.091)			


- Flights whose great circle routes have stronger MIT restrictions, AFP delays, and traverse time in the SAA areas are less efficient.
- Monitor Alert not significant: MA not affect inefficiency per se, but may result in MIT or AFP.

Estimation Results – Cross Sectional

Variable Models Est. / (Std.)				
	Model I _	Model II	Model III	_Model IV
AchDist	53.9478***	53.955*** (1.830)	-	-0.109*** (0.002)
Airport-pair fixed effect	:			
Obs.	436,830	436,830	436,830	436,830
Adjusted R ²	0.654	0.654	0.445	0.040

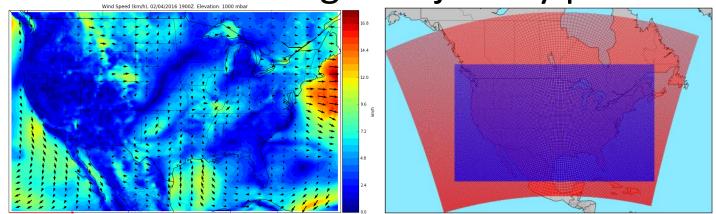


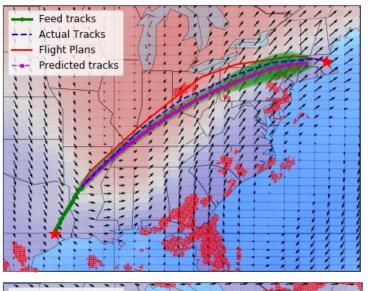
- Model II (airport-pair fixed effect controlled): AchDist mainly derives from flights within the same OD pairs → less efficient departure/arrival procedures result in higher en route inefficiency.
- Model IV: AchDist mainly captures the cross sectional variations → long haul flights are in general more efficient.

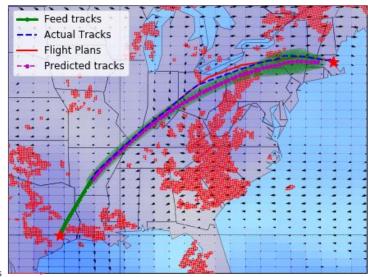
Estimation Results – Cross Sectional

Summaries

- Trajectory Synthetic Algorithm
- Tree-based Matching Algorithm
- Econometric Models
 - Worst case: headwind, convective weather activity, TMIs, and SAAs.
 - Inefficient terminal procedure → reduce en route inefficiency.




Ongoing Work


Data with (even) higher fidelity

Individual flight trajectory prediction model

Thank you!

Yulin Liu

liuyulin101@berkeley.edu

Institute of Transportation Studies, UC Berkeley