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Background

FAA and Eurocontrol published metrics to evaluate flight en
route inefficiency, and understanding the mechanism behind
the inefficiency is of great importance;

* For flight delay we have:

§ Weather: 58.19%

§ Volume: 33.69%

§ Equipment: 0.2%

§ Closed Runway: 4.84%
§ Other: 3.08%

 What about en route
inefficiency?

Sources:
http://www.transtats.bts.gov/ot delay/ot delaycausel.asp?type=5&pn=1



http://www.transtats.bts.gov/ot_delay/ot_delaycause1.asp?type=5&pn=1
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Defining En Route Inefficiency

A—H
H

Inef ficiency =

A: Actual flown distance from exit point to entry point;
* D: Great circle distance between local entry and exit point;

 H: Achieved distance (related to great circle distances from
exit/entry points to arcs surrounding arrival/departure airports).

Sources:
https://www.faa.qov/air traffic/publications/media/us eu comparison 2013.pdf

https://www.eurocontrol.int/sites/default/files/content/documents/single-sky/pru/news-related/2013-05-08-slides-workshop-
achieved-distance.pdf



https://www.faa.gov/air_traffic/publications/media/us_eu_comparison_2013.pdf
https://www.eurocontrol.int/sites/default/files/content/documents/single-sky/pru/news-related/2013-05-08-slides-workshop-achieved-distance.pdf
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Project Goals B

* Support FAA in developing en route inefficiency performance
metrics

* For selected metrics, identify reasons for inefficiency
— NAS route structure
— Convective weather
— Traffic management initiatives (TMIs)
— Winds

* Eventually allow comparison with other ANSPs such as
Eurocontrol
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* Data Sources and Preliminary Statistical Analysis
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Data Sources

* Flight Event Data

— From FAA Enhanced Traffic Management System (ETMS)
— Flight level performance records from 2013 to 2014
— We only focus on the traffic among the U.S. core 34 airports

* Flight Track Data
— From FAA Traffic Flow Management System (TFMS)

— Currently we focus on eight pairs in 2013:
IAH <= BOS, ORD <= DCA, JFK <= LAX and FLL <= JFK
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Summary Statistics

* Flight Event Data

— Record the flight level distance measures,
including filed distance, flown distance
and achieved (benchmark) distance

— Around 3 million flights per year in/out of
core 34 airports, accounting for about
50% of total flights in/out of the US;

* Flight Track Data

— Radar track points:

Latitude, Longitude, Altitude, Time, Ground
speed

Real-time Trajectories: JFK->FLL
- Great Circle Trajectory
© © US Core 34 Airports
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En Route Inefficiency vs Great Circle Distance.”s

En Route Inefficiency
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Mormalized Density

Mormalized Density

Gap Between Actual and Flight Plan Distance:™

Kernel density estimation: 2013
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Macroscopic Variation in Flight Inefficiency
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Patterns of Variation in Flight En Route Inefficienc@q

* Quantify how departure/ arrival airports, seasons and flight
length affect flights” en route inefficiencies;

 We use linear regression to build two fixed effect models to
estimate those effects;

* The first model investigates the independent effects of
terminals, month, and flight length, while the second model
takes a closer look at the monthly variations within each
departure/ arrival airport.
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Model Specification

 Model I: Include airports, months and flight length categories as explanatory
variables, and monthly variation is airport independent. (6M observations, 82
Variables)

Inefflency Z .Bdep Xdep Z IBarr “Aarr Z .Bmon " Amon Z :Bl DlSt

dep arr mon

 Model ll: Include (Airport-Month) tuple and flight length categories as explanatory
variables, which allows monthly variation to be airport specific. (6M observations,
808 Variables)

Ineffiency — z 181 'Xdep—mon Z 182 arr—mon 2:81 DlSt

dep,mon arr,mon
— Disty:0 — 200 NM; Dist,: 200 — 400 NM; Dist3:400 — 600 NM;
— Dist,: 600 — 800 NM; Dists: 800 — 1000 NM; Distg: > 1000 NM
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Model | - Estimation

Fixed effects Estimation
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Model Il = Monthly Variation
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Impact of Route Selection on Flight Inefficiency
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Why Route Selection Matters? Bl
IAH - BOS (2013)
. Macroscopic mOdeIS We“ Real-time Trajectories: IAH->BOS

explain the variation of en L o e ey
referred Routes

route performance, but have

relatively low R squared;

* Trajectories (red curves) show
obvious clustering in the
airspace;

e Different clusters appear to
have different en route
performance.

18
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Finding Nominal Routes

 We define Nominal Routes as the set of representative
trajectories for a given OD pair;

* Nominal routes help us understand the NAS route structures,
and further en route performance;

* Trajectory clustering algorithm helps us achieve such goal.
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Clustering Algorithms

e Step O: Trajectory Cleaning

— Exclude both spatial and temporal
discontinuity trajectories;

— Exclude trajectories starting/ending
outside terminal areas.

e Step 1: Trajectory resampling

— Get trajectories with equal numbers of
points;

— Linear Interpolation (with respect to
distance flown);

— Each trajectory is represented by 100
points.

e Step 2: Principal Component
Analysis (PCA)

— Dimension reduction & Trajectory
smoothing;

— First five components can capture
more than 90% of variations.

e Step 3: Clustering
— Trajectory classifications;

— DBSCAN algorithm is applied to the
PCA components to get representative
clusters;

— solve a 1-median problem to
determine nominal route for each
cluster
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Resampling Example

* Linear interpolation between l Solid Red: Original Track points
the sta rt and end tracking a7 || Dashed black: Interpolated
location for each route af

* 100 pseudo points are 8|
predicted locations at: o
— Initial location (dO) 2
— dO + trajectory distance/99 (d1)

— d1 + trajectory distance/99 (d2) |

— 3D-

— Final trajectory location (d100)

EE i i i i i
=100 —45 =40 -85 —&0 =75 =70

21
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Dimension Reduction

* Reduce the dimension of trajectories — save computational
time
* Improve the quality of clustering — Principal Component
Analysis (PCA) can help to filter off noise and smooth the data
* Using PCA, we found that the first five components can capture
almost all the variation e.g.
— 99% for IAH = BOS
— 96% for FLL = JFK
— 94% for ORD > DCA
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Example of Dimension Reduction (IAH->BOS)

Lat

Onginal Resampled Trajectories

45|

B
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Trajectories based on PCA with five factors
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* Use trajectory PCA components to find sets of trajectories that
are similar to each other;

* Apply DBSCAN algorithm because it
— Does not need to pre-determine number of clusters

— Allows trajectories to be identified as outliers
— Can limit variation within each cluster
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IAH = BOS (1679 of original 1817)

DBSCAN applied to PCA mode matrix

Enroute Inefficiency for different clusters

0.30 - -
3.81% 6.14% 2.84% [1.76% 3.26% 8.78%
025}
Average En Route Inefficiencies

> 0.20 | -
£ 015} :
= 0.10 |

005}

0.00

36.21% 25.25% 30.55% ' 0.95% 1.13%

Black curves are classified as outliers
White Solid curves are Nominal Routes Weights
White Dashed curve is great circle trajectory 25
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JFK = FLL (4043 of original 4273)

DBSCAN applied to PCA mode matrix

Black curves are classified as outliers
White Solid curves are Nominal Routes
White Dashed curve is great circle trajectory

En Route Inefficiency

045

040

035

030

025}

020

015 |

010

a5

000

Enroute Inefficiency for different clusters

1.85%

84.14%

11.59%  8.05% | 12.28%  15.09%

Average En Route Inefficiencies

1.11% 9.57%  2.05% 0.64%
Weights

2.47%

26
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* Build route-specific fixed effect models to capture variations in
en route inefficiencies among representative clusters;
* Model specification

— Separate models for each airport pair

_ InefflClenCY(%) — ,80 + ,Bl month + ,BZ XClusterIDr
— Xmontn and Xcysterrp are categorical variables;

— Cluster ID can be found on previous slides.
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Estimation Results
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e Al the cluster fixed effects are compared with the outlier groups;

* While most of them are significant and with plausible sign, the

explanatory power greatly enhanced.

. )

>, O

-
56

— PPN

IAH_BOS BOS_IAH JKF_FLL FLL_JFK ORD_DCA DCA_ORD
Cluster ID —r -4,328%** -4.831*** -8.108*** -18.470* ** -24.538* ** -22.026***
Cluster ID —g 0.525*** -2.463%** 1.558*** -12.457*** -7.521%** -21.908* **
Cluster ID - m -3.697*** -5.801 *** -1.970*** -12.956* ** -15.434* ** -11.593***
Cluster ID — ¢ -4,292*** -7.017%** 2.240%** - -19.705* ** -13.695***
Cluster ID - b -0.409 -5.498*** 5.058%*** - - 26.114%**
R squared 0.6463 0.6147 0.7523 0.5167 0.6083 0.5076

Notes:

| **%p <0.01; ** p <0.05; *p<0.1

________________________________________________________________________________________________________________________________
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Analysis of Variance

ANOVA * Route Selection explains
100% much of the variation (~60%)

s0% in en route inefficiency;
60%

20% * |dentified clusters are helpful
20% I I in understanding causal
0% reasons for flight en route

& ¥ o inefficiency
R P& Y o7 v
\¢ o S K

M ClusterID MONTH Residual

29
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e Conclusions

30
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Conclusions

* Flight en route inefficiency is on average 3.4%, but varies
significantly with airport pairs and seasons;

* Long-haul flights tend to be more efficient than short-haul
flights;

* For most airport pairs, individual flight trajectories, while
unique, can be divided into natural clusters whose members
are very similar to one another;

* “Outlier” trajectories not belonging to a cluster account for
from 1-15% of the total, depending on the airport pair;
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Conclusions (cont’d)

* Cluster membership accounts for about 60% of overall
variation in inefficiency;

e Flights in summer seasons (May to August) are in general more
inefficient than the others, but seasonal variation accounts for
only 2-6% of the variation;
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Ongoing Work

Other Causal Factors Wind Field Map

Wind Speed (km/h), 01/01/2016 1900Z. Elevation: 200 mbar

 Convective weather A i,
] . .
* Wind )
* Miles-in-trail (MIT) g
L N\ B
W &2 -
N N =

33
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Other Causal Factors

Wind
Convective weather
Miles-in-trail (MIT)

Ongoing Work

Example of MIT

Flight Track
[ From: ARTCC ZDV
B To: ARTCC ZLC
B NAS Element: ONL

34
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Thanks!
Q&A

liuyulin101@berkeley.edu
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Backup Slides
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Method — on “Achieved distance’

——

SR
.

H,{+H,
2

e H =

* Indicate how much
closer is the Entry
point to destination
and how much further

\ is the Exit point away

N, from origin.

_ 37
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Composite Weather Exposure

Thunderstorm Exposure Rain Exposure
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BOS = IAH (1742 of original 1883)

DBSCAN applied to PCA mode matrix

Enroute Inefficiency for different clusters

0.20
1.65% 6.48% 2.28% [1.66% 5.63% 6.00%
015}
_ t
: |
E 0.10 | " :
‘aé ) P |
(=4 | |
LE | ¥ |
0.05 | * ; } %
i L 4 ;
— a— i
— —
000 T_ ! + 1 | |
r|51.49% g|4.707% m | 26.40% c|4.936% b | 1.549% k| 10.90%
Black lines are classified as outliers Cluster color | Proportion

White Solid Lines are centers of each clusters
White Dashed line is great circle trajectory 39
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FLL = JFK (4011 of original 4267)

DBSCAN applied to PCA mode matrix

0e Enroute Inefficiency for different clusters

2.54% 8.61% 8.10% 21.12%
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En Route Inefficiency
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T
0o r|8e4d%% 1_:,l|1l2; T2% m|DIEtlE?-’ k|lIE-EEI'}":-
Black lines are classified as outliers Cluster color | Proportion

White Solid Lines are centers of each clusters
White Dashed line is great circle trajectory 40
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ORD —> DCA (7349 of original 7574)

DBSCAN applied to PCA mode matrix

Enroute Inefficiency for different clusters

12 K
20.73% 12.75% | 8.50% 28.31%
10}
08}
>
S
o
=)
&
2 o6}
/7] |
;5 |
& |
c + |
o4l I
o
3 |
02} i —_—
]
; —_— |
e |
0.0 ' ' ' =r=
r|96.43% g|1.360% m | 0.952% ] 0.136% k|1.115%

Cluster color | Proportion

Black lines are classified as outliers
White Solid Lines are centers of each clusters
White Dashed line is great circle trajectory a1
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DCA = ORD (7383 of original 7557) =¥

Enroute Inefficiency for different clusters

DBSCAN applied to PCA mode matrix 12 ‘ .
355% 4.01% 14.06% | 12.32% 51.94% 25.75%
10} .
i
_ 08} S
") |
o |
= |
T .
£ 06} I
3 — |
pe |
“ o4l I
1
0.2} . =k 1+
L = = .
% e—— a1

r|95.27% g|1.638% m | 0.284% c|0.284% b | 0.108% k|2.410%
Cluster color | Proportion

Black lines are classified as outliers
White Solid Lines are centers of each clusters
White Dashed line is great circle trajectory 42
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JFK = LAX (10725 of original 11586)

_ Enroute Inefficiency for different clusters

DBSCAN applied to PCA mode matrix 014 ¥

0.12
0.10 |
0.08 -

0.06 |-

En Route Inefficiency

0.04 | : |
|
o e .
BIaCk Iines are CIass’:fied as OUtIiers 0.00 r| 42',44% g 2 725% m | 11‘3.36% c| 8.I373% b| 9.I559% k| 18'.53%
White Solid Lines are centers of each clusters Cluster color | Proportion
White Dashed line is great circle trajectory
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LAX = JFK (10447 of original 11543)

Enroute Inefficiency for different clusters

0.30
DBSCAN applied to PCA mode matrix
025 §
. 020} $
] 1S
o i
e ‘
€ 015}
5 10}
: I
0.05 | ¥ : ! |
iy, + * E
. .. . oo = == Ea ; o
Black lines are classified as outliers 1231% 0]2064%  m|3994%  c|4215%  K|[20.89%

Cluster color | Proportion

White Solid Lines are centers of each clusters
White Dashed line is great circle trajectory
44



