En Route Performance In The National Airspace System

Mark Hansen, Yulin Liu

University of California, Berkeley
Cara Chuang, David Lovell, Michael Ball
University of Maryland, College Park
Jan 11st, 2017

Outline

- Introduction
- Data Sources and Preliminary Statistical Analysis
- Macroscopic Variation in Flight Inefficiency
- Imnact of Route Selection on Flight Inefficiency
- Conclusions

Background

- FAA and Eurocontrol published metrics to evaluate flight en route inefficiency, and understanding the mechanism behind the inefficiency is of great importance;
- For flight delay we have:
- What about en route inefficiency?

I Weather: 58.19\%
\| Volume: 33.69\%
. Equipment: 0.2\%

- Closed Runway: 4.84\%
- Other: 3.08\%

Defining En Route Inefficiency

$$
\text { Inefficiency }=\frac{A-H}{H}
$$

- A: Actual flown distance from exit point to entry point;
- D : Great circle distance between local entry and exit point;
- H: Achieved distance (related to great circle distances from exit/entry points to arcs surrounding arrival/departure airports).

Sources:

https://www.faa.gov/air traffic/publications/media/us eu comparison 2013.pdf

Project Goals

- Support FAA in developing en route inefficiency performance metrics
- For selected metrics, identify reasons for inefficiency
- NAS route structure
- Convective weather
- Traffic management initiatives (TMIs)
- Winds
- Eventually allow comparison with other ANSPs such as Eurocontrol

Outline

- Introduction
- Data Sources and Preliminary Statistical Analysis
- Macroscopic Variation in Flight Inefficiency
- Impact of Route Selection on Flight Inefficiency
- Conclusions

Data Sources

- Flight Event Data
- From FAA Enhanced Traffic Management System (ETMS)
- Flight level performance records from 2013 to 2014
- We only focus on the traffic among the U.S. core 34 airports
- Flight Track Data
- From FAA Traffic Flow Management System (TFMS)
- Currently we focus on eight pairs in 2013:
$\mathrm{IAH} \leftrightarrow \mathrm{BOS}, \mathrm{ORD} \leftrightarrow \mathrm{DCA}, \mathrm{JFK} \leftrightarrow \mathrm{LAX}$ and FLL $\leftrightarrow \mathrm{JFK}$

Summary Statistics

- Flight Event Data
- Record the flight level distance measures, including filed distance, flown distance and achieved (benchmark) distance
- Around 3 million flights per year in/out of core 34 airports, accounting for about 50% of total flights in/out of the US;
- Flight Track Data
- Radar track points:

Latitude, Longitude, Altitude, Time, Ground speed

En Route Inefficiency vs Great Circle Distance

Gap Between Actual and Flight Plan Distance

Inefficiencies for Representative Airport Pairs (2013)

ATL to ORD (6.86\%)

Horizontal inefficiency for flights from ATL to ORD

ATL to LAX (1.28\%)

Outline

- Introduction
- Data Sources and Preliminary Statistical Analysis
- Macroscopic Variation in Flight Inefficiency
- Impact of Route Selection on Flight Inefficiency
- Conclusions

Patterns of Variation in Flight En Route Inefficienc $y_{R y=0}$

- Quantify how departure/ arrival airports, seasons and flight length affect flights' en route inefficiencies;
- We use linear regression to build two fixed effect models to estimate those effects;
- The first model investigates the independent effects of terminals, month, and flight length, while the second model takes a closer look at the monthly variations within each departure/ arrival airport.

Model Specification

- Model I: Include airports, months and flight length categories as explanatory variables, and monthly variation is airport independent. (6M observations, 82 Variables)

$$
\text { Ineffiency }=\sum_{d e p} \beta_{d e p} \cdot X_{d e p}+\sum_{a r r} \beta_{a r r} \cdot X_{a r r}+\sum_{m o n} \beta_{m o n} \cdot X_{m o n}+\sum_{i}^{5} \beta_{i} \cdot \text { Dist }_{i}
$$

- Model II: Include (Airport-Month) tuple and flight length categories as explanatory variables, which allows monthly variation to be airport specific. (6M observations, 808 Variables)

$$
\begin{aligned}
& \text { Ineffiency }=\sum_{\text {dep,mon }} \beta_{1} \cdot X_{\text {dep }- \text { mon }}+\sum_{\text {arr,mon }} \beta_{2} \cdot X_{\text {arr-mon }}+\sum_{i}^{5} \beta_{i} \cdot \text { Dist }_{i} \\
& \text { - } \text { Dist }_{1}: 0-200 \text { NM; } \text { Dist }_{2}: 200-400 \text { NM; } \text { Dist }_{3}: 400-600 \text { NM; } \\
& \text { - } \text { Dist }_{4}: 600-800 \text { NM; } \text { Dist }_{5}: 800-1000 \text { NM; } \text { Dist }_{6}:>1000 \text { NM }
\end{aligned}
$$

Model I - Estimation

Fixed effects Estimation

Model II - Monthly Variation

SFO

$$
\|\|\|\|A\| d\|
$$

MSP

Outline

- Introduction
- Data Sources and Preliminary Statistical Analysis
- Macroscopic Variation in Flight Inefficiency
- Impact of Route Selection on Flight Inefficiency
- Conclusions

Why Route Selection Matters? IAH \rightarrow BOS (2013)

- Macroscopic models well explain the variation of en route performance, but have relatively low R squared;
- Trajectories (red curves) show obvious clustering in the airspace;
- Different clusters appear to have different en route performance.

Finding Nominal Routes

- We define Nominal Routes as the set of representative trajectories for a given OD pair;
- Nominal routes help us understand the NAS route structures, and further en route performance;
- Trajectory clustering algorithm helps us achieve such goal.

Clustering Algorithms

- Step 0: Trajectory Cleaning
- Exclude both spatial and temporal discontinuity trajectories;
- Exclude trajectories starting/ending outside terminal areas.
- Step 1: Trajectory resampling
- Get trajectories with equal numbers of points;
- Linear Interpolation (with respect to distance flown);
- Each trajectory is represented by 100 points.
- Step 2: Principal Component Analysis (PCA)
- Dimension reduction \& Trajectory smoothing;
- First five components can capture more than 90% of variations.
- Step 3: Clustering
- Trajectory classifications;
- DBSCAN algorithm is applied to the PCA components to get representative clusters;
- solve a 1-median problem to determine nominal route for each cluster

Resampling Example

- Linear interpolation between the start and end tracking location for each route
- 100 pseudo points are predicted locations at:
- Initial location (d0)
- d0 + trajectory distance/99 (d1)
- d1 + trajectory distance/99 (d2)
- ...
- Final trajectory location (d100)

Dimension Reduction

- Reduce the dimension of trajectories - save computational time
- Improve the quality of clustering - Principal Component Analysis (PCA) can help to filter off noise and smooth the data
- Using PCA, we found that the first five components can capture almost all the variation e.g.
-99% for IAH \rightarrow BOS
-96% for FLL \rightarrow JFK
- 94\% for ORD \rightarrow DCA

Example of Dimension Reduction (IAH $\rightarrow \mathrm{BOS})={ }^{2}$

Trajectory Clustering

- Use trajectory PCA components to find sets of trajectories that are similar to each other;
- Apply DBSCAN algorithm because it
- Does not need to pre-determine number of clusters
- Allows trajectories to be identified as outliers
- Can limit variation within each cluster

IAH \rightarrow BOS (1679 of original 1817)

DBSCAN applied to PCA mode matrix

Black curves are classified as outliers White Solid curves are Nominal Routes
 White Dashed curve is great circle trajectory

Weights

JFK \rightarrow FLL (4043 of original 4273)

DBSCAN applied to PCA mode matrix

Black curves are classified as outliers White Solid curves are Nominal Routes White Dashed curve is great circle trajectory

Weights

Impact of Route Selection

- Build route-specific fixed effect models to capture variations in en route inefficiencies among representative clusters;
- Model specification
- Separate models for each airport pair
- Inefficiency $(\%)=\beta_{0}+\beta_{1}^{\prime} \cdot X_{\text {month }}+\beta_{2}^{\prime} \cdot X_{\text {ClusterID }}$;
- $X_{\text {month }}$ and $X_{\text {ClusterID }}$ are categorical variables;
- Cluster ID can be found on previous slides.

Estimation Results

- Al the cluster fixed effects are compared with the outlier groups;
- While most of them are significant and with plausible sign, the explanatory power greatly enhanced.

	IAH_BOS	BOS_IAH	JKF_FLL	FLL_JFK	ORD_DCA	DCA_ORD
Cluster ID - r	$-4.328^{* * *}$	$-4.831^{* * *}$	$-8.108^{* * *}$	$-18.470^{* * *}$	$-24.538^{* * *}$	$-22.026^{* * *}$
Cluster ID - g	$0.525^{* * *}$	$-2.463^{* * *}$	$1.558^{* * *}$	$-12.457^{* * *}$	$-7.521^{* * *}$	$-21.908^{* * *}$
Cluster ID - m	$-3.697^{* * *}$	$-5.801^{* * *}$	$-1.970^{* * *}$	$-12.956^{* * *}$	$-15.434^{* * *}$	$-11.593^{* * *}$
Cluster ID - c	$-4.292^{* * *}$	$-7.017^{* * *}$	$2.240^{* * *}$	-	$-19.705^{* * *}$	$-13.695^{* * *}$
Cluster ID - b	-0.409	$-5.498^{* * *}$	$5.058^{* * *}$	-	-	$26.114^{* * *}$
R squared	0.6463	0.6147	0.7523	0.5167	0.6083	0.5076

ITSBerkeley

Analysis of Variance

ANOVA

- Route Selection explains much of the variation ($\sim 60 \%$) in en route inefficiency;
- Identified clusters are helpful in understanding causal reasons for flight en route inefficiency

Outline

- Introduction

- Data Sources and Preliminary Statistical Analysis
- Macroscopic Variation in Flight Inefficiency
- Impact of Route Selection on Flight Inefficiency
- Conclusions

Conclusions

- Flight en route inefficiency is on average 3.4\%, but varies significantly with airport pairs and seasons;
- Long-haul flights tend to be more efficient than short-haul flights;
- For most airport pairs, individual flight trajectories, while unique, can be divided into natural clusters whose members are very similar to one another;
- "Outlier" trajectories not belonging to a cluster account for from 1-15\% of the total, depending on the airport pair;

Conclusions (cont'd)

- Cluster membership accounts for about 60% of overall variation in inefficiency;
- Flights in summer seasons (May to August) are in general more inefficient than the others, but seasonal variation accounts for only $2-6 \%$ of the variation;

Ongoing Work

Other Causal Factors

- Convective weather
- Wind
- Miles-in-trail (MIT)

Wind Field Map

Ongoing Work

Other Causal Factors

- Wind
- Convective weather
- Miles-in-trail (MIT)

Example of MIT

Thanks!

Q\&A
liuyulin101@berkeley.edu

Backup Slides

Method - on "Achieved distance"

- $H=\frac{H_{1}+H_{2}}{2}$
- Indicate how much closer is the Entry point to destination and how much further is the Exit point away from origin.

Composite Weather Exposure

Thunderstorm Exposure

Rain Exposure

BOS \rightarrow IAH (1742 of original 1883)

DBSCAN applied to PCA mode matrix

Black lines are classified as outliers White Solid Lines are centers of each clusters White Dashed line is great circle trajectory

FLL \rightarrow JFK (4011 of original 4267)

DBSCAN applied to PCA mode matrix

Black lines are classified as outliers White Solid Lines are centers of each clusters White Dashed line is great circle trajectory

ORD \rightarrow DCA (7349 of original 7574)

DBSCAN applied to PCA mode matrix

Black lines are classified as outliers White Solid Lines are centers of each clusters White Dashed line is great circle trajectory

DCA \rightarrow ORD (7383 of original 7557)

DBSCAN applied to PCA mode matrix

Black lines are classified as outliers White Solid Lines are centers of each clusters White Dashed line is great circle trajectory

JFK \rightarrow LAX (10725 of original 11586)

DBSCAN applied to PCA mode matrix

Black lines are classified as outliers White Solid Lines are centers of each clusters
 White Dashed line is great circle trajectory

LAX \rightarrow JFK (10447 of original 11543)

DBSCAN applied to PCA mode matrix

Black lines are classified as outliers White Solid Lines are centers of each clusters
 White Dashed line is great circle trajectory

