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Background

• FAA and Eurocontrol published metrics to evaluate flight en 
route inefficiency, and understanding the mechanism behind 
the inefficiency is of great importance;

• For flight delay we have:

• What about en route 

inefficiency?
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Sources: 
http://www.transtats.bts.gov/ot_delay/ot_delaycause1.asp?type=5&pn=1

http://www.transtats.bts.gov/ot_delay/ot_delaycause1.asp?type=5&pn=1


Defining En Route Inefficiency

𝐼𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝐴 − 𝐻

𝐻
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• 𝐴: Actual flown distance from exit point to entry point;

• 𝐷: Great circle distance between local entry and exit point;

• 𝐻: Achieved distance (related to great circle distances from 
exit/entry points to arcs surrounding arrival/departure airports).

Sources: 
https://www.faa.gov/air_traffic/publications/media/us_eu_comparison_2013.pdf
https://www.eurocontrol.int/sites/default/files/content/documents/single-sky/pru/news-related/2013-05-08-slides-workshop-
achieved-distance.pdf
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https://www.eurocontrol.int/sites/default/files/content/documents/single-sky/pru/news-related/2013-05-08-slides-workshop-achieved-distance.pdf


Project Goals

• Support FAA in developing en route inefficiency performance 
metrics

• For selected metrics, identify reasons for inefficiency
– NAS route structure

– Convective weather

– Traffic management initiatives (TMIs)

– Winds

• Eventually allow comparison with other ANSPs such as 
Eurocontrol
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Data Sources

• Flight Event Data

– From FAA Enhanced Traffic Management System (ETMS)

– Flight level performance records from 2013 to 2014

– We only focus on the traffic among the U.S. core 34 airports

• Flight Track Data

– From FAA Traffic Flow Management System (TFMS)

– Currently we focus on eight pairs in 2013: 

IAH ⟷ BOS, ORD ⟷ DCA, JFK ⟷ LAX and FLL ⟷ JFK
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Summary Statistics
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• Flight Event Data

– Record the flight level distance measures, 
including filed distance, flown distance 
and achieved (benchmark) distance 

– Around 3 million flights per year in/out of 
core 34 airports, accounting for about 
50% of total flights in/out of the US;

• Flight Track Data

– Radar track points: 

Latitude, Longitude, Altitude, Time, Ground 
speed



En Route Inefficiency vs Great Circle Distance 
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Gap Between Actual and Flight Plan Distance
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Inefficiencies for Representative Airport Pairs (2013)

ATL to ORD (6.86%) ATL to LAX (1.28%)
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Patterns of Variation in Flight En Route Inefficiency

• Quantify how departure/ arrival airports, seasons and flight 
length affect flights’ en route inefficiencies;

• We use linear regression to build two fixed effect models to 
estimate those effects;

• The first model investigates the independent effects of 
terminals, month, and flight length, while the second model 
takes a closer look at the monthly variations within each 
departure/ arrival airport.
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Model Specification
• Model I: Include airports, months and flight length categories as explanatory 

variables, and monthly variation is airport independent. (6M observations, 82 
Variables)

𝐼𝑛𝑒𝑓𝑓𝑖𝑒𝑛𝑐𝑦 =

𝑑𝑒𝑝

𝛽𝑑𝑒𝑝 ⋅ 𝑋𝑑𝑒𝑝 +

𝑎𝑟𝑟

𝛽𝑎𝑟𝑟 ⋅ 𝑋𝑎𝑟𝑟 + 

𝑚𝑜𝑛

𝛽𝑚𝑜𝑛 ⋅ 𝑿𝒎𝒐𝒏 +

𝑖
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𝛽𝑖 ⋅ 𝐷𝑖𝑠𝑡𝑖

• Model II: Include (Airport-Month) tuple and flight length categories as explanatory 
variables, which allows monthly variation to be airport specific. (6M observations, 
808 Variables)

𝐼𝑛𝑒𝑓𝑓𝑖𝑒𝑛𝑐𝑦 = 

𝑑𝑒𝑝,𝑚𝑜𝑛

𝛽1 ⋅ 𝑿𝒅𝒆𝒑−𝒎𝒐𝒏 + 

𝑎𝑟𝑟,𝑚𝑜𝑛

𝛽2 ⋅ 𝑿𝒂𝒓𝒓−𝒎𝒐𝒏 +

𝑖
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𝛽𝑖 ⋅ 𝐷𝑖𝑠𝑡𝑖

– 𝐷𝑖𝑠𝑡1: 0 − 200 𝑁𝑀;𝐷𝑖𝑠𝑡2: 200 − 400 𝑁𝑀;𝐷𝑖𝑠𝑡3: 400 − 600 𝑁𝑀;

– 𝐷𝑖𝑠𝑡4: 600 − 800 𝑁𝑀;𝐷𝑖𝑠𝑡5: 800 − 1000 𝑁𝑀;𝐷𝑖𝑠𝑡6: > 1000 𝑁𝑀
14



Model I - Estimation
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Model II – Monthly Variation

16



Outline

• Introduction

• Data Sources and Preliminary Statistical Analysis

• Macroscopic Variation in Flight Inefficiency

• Impact of Route Selection on Flight Inefficiency

• Conclusions

17



Why Route Selection Matters?

• Macroscopic models well 
explain the variation of en 
route performance, but have 
relatively low R squared;

• Trajectories (red curves) show 
obvious clustering in the 
airspace; 

• Different clusters appear to 
have different en route 
performance.
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IAH → BOS (2013)



Finding Nominal Routes 

• We define Nominal Routes as the set of representative 
trajectories for a given OD pair;

• Nominal routes help us understand the NAS route structures, 
and further en route performance;

• Trajectory clustering algorithm helps us achieve such goal.
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Clustering Algorithms

• Step 0: Trajectory Cleaning
– Exclude both spatial and temporal 

discontinuity trajectories;
– Exclude trajectories starting/ending 

outside terminal areas.

• Step 1: Trajectory resampling
– Get trajectories with equal numbers of 

points;
– Linear Interpolation (with respect to 

distance flown);
– Each trajectory is represented by 100 

points.

• Step 2: Principal Component 
Analysis (PCA)
– Dimension reduction & Trajectory 

smoothing;
– First five components can capture 

more than 90% of variations.

• Step 3: Clustering
– Trajectory classifications;
– DBSCAN algorithm is applied to the 

PCA components to get representative 
clusters;

– solve a 1-median problem to 
determine nominal route for each 
cluster
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Resampling Example

• Linear interpolation between 
the start and end tracking 
location for each route

• 100 pseudo points are 
predicted locations at:

– Initial location (d0)

– d0 + trajectory distance/99 (d1)

– d1 + trajectory distance/99 (d2)

– …

– Final trajectory location (d100)
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Dimension Reduction

• Reduce the dimension of trajectories – save computational 
time

• Improve the quality of clustering – Principal Component 
Analysis (PCA) can help to filter off noise and smooth the data

• Using PCA, we found that the first five components can capture 
almost all the variation e.g.
– 99% for IAH → BOS

– 96% for FLL → JFK

– 94% for ORD → DCA
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Example of Dimension Reduction (IAH→BOS)
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Trajectory Clustering

• Use trajectory PCA components to find sets of trajectories that 
are similar to each other;

• Apply DBSCAN algorithm because it

– Does not need to pre-determine number of clusters

– Allows trajectories to be identified as outliers

– Can limit variation within each cluster
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IAH → BOS (1679 of original 1817)
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Black curves are classified as outliers
White Solid curves are Nominal Routes
White Dashed curve is great circle trajectory

3.81% 6.14% 2.84% 1.76% 3.26% 8.78%

Average En Route Inefficiencies

36.21% 25.25% 30.55% 0.95% 1.13% 5.90%

Weights



JFK→ FLL (4043 of original 4273)
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1.85% 11.59% 8.05% 12.28% 15.09% 10.00%

Black curves are classified as outliers
White Solid curves are Nominal Routes
White Dashed curve is great circle trajectory

84.14% 1.11% 9.57% 2.05% 0.64% 2.47%

Weights

Average En Route Inefficiencies



Impact of Route Selection

• Build route-specific fixed effect models to capture variations in 
en route inefficiencies among representative clusters;

• Model specification

– Separate models for each airport pair

– 𝐼𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 % = 𝛽0 + 𝛽1
′ ⋅ 𝑋𝑚𝑜𝑛𝑡ℎ + 𝛽2

′ ⋅ 𝑋𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷;

– 𝑋𝑚𝑜𝑛𝑡ℎ and 𝑋𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 are categorical variables;

– Cluster ID can be found on previous slides.
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Estimation Results

28

IAH_BOS BOS_IAH JKF_FLL FLL_JFK ORD_DCA DCA_ORD

Cluster ID – r -4.328*** -4.831*** -8.108*** -18.470*** -24.538*** -22.026***

Cluster ID – g 0.525*** -2.463*** 1.558*** -12.457*** -7.521*** -21.908***

Cluster ID – m -3.697*** -5.801*** -1.970*** -12.956*** -15.434*** -11.593***

Cluster ID – c -4.292*** -7.017*** 2.240*** - -19.705*** -13.695***

Cluster ID - b -0.409 -5.498*** 5.058*** - - 26.114***

R squared 0.6463 0.6147 0.7523 0.5167 0.6083 0.5076

Notes:
*** p < 0.01; ** p < 0.05; * p<0.1

• Al the cluster fixed effects are compared with the outlier groups;

• While most of them are significant and with plausible sign, the 
explanatory power greatly enhanced.



Analysis of Variance
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• Route Selection explains 
much of the variation (~60%) 
in en route inefficiency;

• Identified clusters are helpful 
in understanding causal 
reasons for flight en route 
inefficiency
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Conclusions

• Flight en route inefficiency is on average 3.4%, but varies 
significantly with airport pairs and seasons;

• Long-haul flights tend to be more efficient than short-haul 
flights;

• For most airport pairs, individual flight trajectories, while 
unique, can be divided into natural clusters whose members 
are very similar to one another;

• “Outlier” trajectories not belonging to a cluster account for 
from 1-15% of the total, depending on the airport pair;
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Conclusions (cont’d)

• Cluster membership accounts for about 60% of overall 
variation in inefficiency;

• Flights in summer seasons (May to August) are in general more 
inefficient than the others, but seasonal variation accounts for 
only 2-6% of the variation;
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Ongoing Work

Other Causal Factors

• Convective weather

• Wind

• Miles-in-trail (MIT)

Wind Field Map
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Ongoing Work

Other Causal Factors

• Wind

• Convective weather

• Miles-in-trail (MIT)

Example of MIT
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Thanks!
Q&A

liuyulin101@berkeley.edu

mailto:liuyulin101@berkeley.edu


Backup Slides
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Method – on “Achieved distance”

• 𝐻 =
𝐻1+𝐻2

2

• Indicate how much 
closer is the Entry 
point to destination 
and how much further 
is the Exit point away 
from origin.
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Composite Weather Exposure

Thunderstorm Exposure Rain Exposure
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BOS → IAH (1742 of original 1883)

39

Black lines are classified as outliers
White Solid Lines are centers of each clusters
White Dashed line is great circle trajectory

1.65% 6.48% 2.28% 1.66% 5.63% 6.00%



FLL → JFK (4011 of original 4267)
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Black lines are classified as outliers

2.54% 8.61% 8.10% 21.12%

Black lines are classified as outliers
White Solid Lines are centers of each clusters
White Dashed line is great circle trajectory



ORD→ DCA (7349 of original 7574)
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Black lines are classified as outliers

3.50% 20.73% 12.75% 8.50% 28.31%

Black lines are classified as outliers
White Solid Lines are centers of each clusters
White Dashed line is great circle trajectory



DCA→ ORD (7383 of original 7557)

42

3.55% 4.01% 14.06% 12.32% 51.94% 25.75%

Black lines are classified as outliers
White Solid Lines are centers of each clusters
White Dashed line is great circle trajectory



JFK→ LAX (10725 of original 11586)
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Black lines are classified as outliers
White Solid Lines are centers of each clusters
White Dashed line is great circle trajectory

1.25% 4.76% 2.14% 2.14% 4.01%



LAX→ JFK (10447 of original 11543)
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Black lines are classified as outliers
White Solid Lines are centers of each clusters
White Dashed line is great circle trajectory


