
 

EN ROUTE PERFORMANCE IN THE NATIONAL AIRSPACE SYSTEM 1 

 2 

 3 

Mark Hansen 4 

National Center of Excellence for Aviation Operations Research (NEXTOR II) 5 

114 McLaughlin Hall 6 

University of California, Berkeley, CA 94720 7 

Tel: 510-642-2880; Fax: 510-643-3955; Email: mhansen@ce.berkeley.edu 8 

 9 

Yulin Liu 10 

National Center of Excellence for Aviation Operations Research (NEXTOR II) 11 

107 McLaughlin Hall 12 

University of California, Berkeley, CA 94720 13 

Tel: 510-590-7867; Email: liuyulin101@berkeley.edu 14 

 15 

Cara Chuang 16 

Department of Civil and Environmental Engineering 17 

University of Maryland, College Park, MD 20742 18 

Email: cara.y.chuang@gmail.com 19 

 20 

David Lovell 21 

Department of Civil and Environmental Engineering 22 

1173 Glenn L. Martin Hall 23 

University of Maryland, College Park, MD 20742 24 

Tel: 301-405-7995; Fax: 301-405-2585; Email: lovell@umd.edu 25 

 26 

Michael O. Ball 27 

Robert H. Smith School of Business 28 

2416 Van Munching Hall 29 

University of Maryland, College Park, MD 20742 30 

Tel: 301-405-2227; Email: mball@rhsmith.umd.edu 31 

 32 

 33 

Word count:  3364 words (in text) + 12 tables/figures x 250 words (each) = 6364 words 34 

 35 

Submission Date: 08/01/2016 36 

mailto:wzding@berkeley.edu
mailto:cara.y.chuang@gmail.com
mailto:lovell@umd.edu
mailto:mball@rhsmith.umd.edu


Hansen et al  2 

 

ABSTRACT 1 

We investigate patterns of en route flight inefficiency for US domestic flights into and out of 34 2 

major US airports, using a dataset of several million flights from the years 2013 and 2014. 3 

Following earlier work, our inefficiency metrics compare the distance flown between airport 4 

terminal exit and entry points with the achieved distance, and further isolate the effects of pre-5 

specified, and often not ideal, entry and exit points (TMA) and excess distance flown between 6 

these points (DIR). We find the TMA inefficiency decreases with flight distance, while DIR 7 

inefficiency is roughly constant with distance. Inefficiency varies considerably for flights between 8 

a given airport-pair, with median values generally less than 5%. Fixed effect models reveal that 9 

origin and destination airport have significant effects on inefficiency, but there is little correlation 10 

between the origin fixed effect and destination fixed effect for a given airport. An additional model 11 

that considers fixed effects or airport-month combinations reveals departure airport-month fixed 12 

effects are stronger than those for arrival airport-month fixed effects. Despite the importance of 13 

the fixed effects, there is much unexplained variation, particularly for DIR inefficiency. This 14 

suggests the need for further research to better understand the factors that drive en route 15 

inefficiency variation in the US aviation system. 16 

 17 

 18 

Keywords: Flight Performance, En route efficiency, Fixed effects model 19 
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1. INTRODUCTION 1 

Recent years have witnessed growing interest in comparative performance assessment of air navigation 2 

service providers. Such efforts face difficult challenges, in particular the need to identify key performance 3 

indicators (KPIs) that are precisely defined, can be assessed using data available to all providers, and which 4 

capture the major dimensions of aviation system performance. The potential payoffs from comparative 5 

performance assessment more than justify such work, however. These include identifying opportunities for 6 

performance improvement, determining the benefits from modernization, and more fundamentally 7 

understanding the linkages between structure and performance in the air navigation service domain. 8 

Comparative assessments typically emphasize macro comparisons. For example, the most recent 9 

comparison of US and European air navigation system performance (1) emphasizes conclusions such as 10 

“Europe continues to demonstrate less additional time in the taxi-out phase than in the US” and “the US 11 

continues to show a lower level of inefficiency in the airborne phase of flight.” From the standpoint of 12 

senior decision makers, such high level conclusions represent the ultimate payoff from vast amounts of data 13 

collection and analysis. To researchers and scholars, however, they beg more detailed questions. Are taxi-14 

out times in the US high everywhere or are the results skewed by a few highly congested airports? Similarly, 15 

is airborne inefficiency fairly constant across space and time, or are there pronounced patterns of variation 16 

and, if so, what are they? Answers to such questions, in addition to satisfying basic curiosity, may be equally 17 

or more relevant to the practical project of improving system performance than the macro comparisons. For 18 

example, it may be far easier to import best practices from one region of a single air navigation system to 19 

another than to do so across systems. 20 

 21 

2. LITERATURE REVIEW 22 

The en route phase of a flight is defined as the portion between a 40 nautical-mile circular boundary around 23 

the departure airport (D40) and a 100 nautical-mile circular boundary around the arrival airport (A100). 24 

This definition is intended to exclude the portions of the flight path that are strongly influenced by terminal 25 

operations. Horizontal en route inefficiency, which evaluates actual flight trajectories against a benchmark 26 

trajectory, has received considerable attention in the open literature. Ref. [1] calculates the horizontal 27 

inefficiency based on the extra distance flown in the en route phase with respect to an ideal distance known 28 

as “achieved distance”, which represents the average of how much further the flight has gotten from the 29 

origin and how much closer it has gotten to the destination over the en route portion of the flight (2). This 30 

method, instead of choosing great circle distance between OD airport as the benchmark, excludes the effect 31 

of terminal inefficiency. Equation (1) explicitly expresses the definition, where 𝐻𝐼𝐸  is the horizontal 32 

inefficiency of a flight, 𝐴 is the actual flown distance, and 𝐻 is the achieved distance.  33 

 34 

𝐻𝐼𝐸 =
𝐴−𝐻

𝐻
        (1) 35 

 36 

The overall en route inefficiency can be further decomposed into two parts: direct route (DIR) 37 

extension inefficiency and terminal (TMA) extension inefficiency. While the first component is primarily 38 

driven by the efficiency of the path between the actual terminal area entry and exit points, the TMA 39 

extension inefficiency reflects the inefficiency that derives from the location of these points, which are 40 

usually not on the great circle route between the origin and destination. The decomposition can be written 41 

as: 42 

 43 

𝐻𝐼𝐸 = 𝐷𝐼𝑅 + 𝑇𝑀𝐴 =
𝐴−𝐷

𝐻
+

𝐷−𝐻

𝐻
      (2) 44 

 45 

Where 𝐷𝐼𝑅 is the direct route extension inefficiency, 𝑇𝑀𝐴 is the terminal extension inefficiency, and 𝐷 is 46 

the great circle distance from the exit point to the entry point. 47 

Based on this methodology, the US-Europe Performance Report (1) compares en route 48 

inefficiency in the US and Europe. Both US and Europe have been on a downward trend for en route 49 
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inefficiency, but US in general in general is more efficient than Europe – in 2013, the flight inefficiency 1 

calculated from equation (2) is 2.7% for the US and 2.9% for Europe. The report documents certain patterns 2 

both for US and Europe. It suggests that flights to New York and Florida area are systematically more 3 

inefficient, mostly due to the avoidance of special use airspace (SUE) and long transcontinental operations. 4 

In Europe, the implementation of free route airspace (FRA) improves the en route efficiency significantly, 5 

especially for flights through those areas. 6 

However, one major criticism of the metric is the selection of the “achieved distance” as the 7 

benchmark distance. Although it takes into account the deviation between exit/entry points with a direct 8 

route from origin to the destination, it is not an “optimum” trajectory distance for most flight operations, 9 

when considering meteorological conditions. Calvo et al. (3) propose the fuel efficiency as the metric to 10 

evaluate flight efficiency. Instead of using absolute distance, they calculate the inefficiency based on the 11 

additional fuel burn of the actual trajectory over the great circle trajectory between the exit and entry points. 12 

Although this metric performs quite differently from the route extension metric for some flights, these two 13 

are highly correlated most of the time. Therefore, route extension metric, while not perfect, has the virtue 14 

of simplicity and appears to correlate well with more refined metrics. 15 

3. METHODOLOGY  16 

Our aim is to investigate variation in the en route inefficiency metric for US flights. We focus on factors 17 

related to origin and destination airport, season, and flight distance. We apply linear regression techniques 18 

to explore and quantify factors that potentially impact flights’ horizontal en-route inefficiencies. We are 19 

more interested in broad patterns than the specific circumstances that affect the inefficiency of individual 20 

flights.  21 

3.1 Descriptive Data Analysis 22 

We obtained the flight level performance data from the Enhanced Traffic Management System (ETMS) of 23 

FAA. The data covers around twelve million flights arriving at U.S. 34 core airports (Appendix A) from 24 

January 1st, 2013 to December 31st, 2014, in which 87% of total records are domestic flights and less 1% 25 

are diverted flights or missing records. Each record includes the origin/destination airports and 26 

departure/arrival time of a flight. Distance information driven by radar tracking data, such as actual flown 27 

distance, flight plan distance, great circle distance and achieved distance, is provided as well. 28 

We limit our scope to flights that into and from the US 34 core airports, which represents most of 29 

US IFR flights (1). After removing all international or diverted flights, we obtained our final dataset with 30 

six million records, which encompasses about 50% of total traffic in the ETMS database. Based on the data, 31 

we first apply Equation (1) to calculate the en route inefficiency for each flight, then we compare 32 

inefficiencies from the perspective of flight length, airport pair and season. 33 

Figure 1 shows the average horizontal en route inefficiency for flights within each flight length 34 

category. There is no significant difference in inefficiency across all flight length groups between year 2013 35 

and 2014. The average inefficiency across all flights is 3.413% for 2013, which is only 0.006% higher than 36 

2014. Figure 1 shows that long-haul flights tend to be more efficient than short-haul flights, and that this is 37 

primarily the result of decreasing TMA extension inefficiency with distance. This suggests that excess 38 

distance from inefficient placement of entry and exit points is independent of great circle distance. On the 39 

other hand, DIR inefficiency is roughly independent of great circle distance, implying that the excess 40 

distance between entry and exit points compared to the great circle distance is roughly proportional to the 41 

great circle distance. 42 

We calculate the monthly average horizontal inefficiencies for four representative routes, ATL – 43 

JFK, ATL – EWR, MSP – LAX and MSP – MIA, in 2013 to further investigate how terminals and seasons 44 

affect flights en route efficiencies. Boxplots of inefficiencies across months for those pairs are shown in 45 

Figure 2 and Figure 3. All of the plots reveal that inefficiency is skewed to the right. The skew is most 46 

pronounced for city pairs that are relatively efficient, because the left tail is bounded by zero. 47 

 48 
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 1 

Figure 1 Summary of horizontal en route inefficiency 2 

 3 

Figure 2 Horizontal inefficiency for representative airport pairs 4 

Figure 2 illustrates the case for flights from ATL to JFK and from ATL to EWR. The average 5 

inefficiency across the whole year is 7.82% for flights to JFK, and is 2.95% for flights to EWR. Meanwhile, 6 

flights to JFK demonstrates higher variations than EWR. Since both pairs have the same origin airport and 7 

similar route structure, terminal congestion is likely to be a significant factor contributing to en route 8 

inefficiency. A possible explanation is that flights to JFK must circumvent traffic into the rest of the New 9 

York metroplex, while EWR, since it is on the southern edge of the region, is more accessible from the 10 

south. The second group of routes, shown in Figure 3, which have similar flight length, reveals the impacts 11 

of weather and season. Both figures indicate that flights from May to August are more inefficient than the 12 

other months, especially for flights from MSP to MIA. This suggests that convective weather, which is 13 

more frequent during summer season and along the south coast, increases the overall flight en route 14 

inefficiency. 15 

 16 
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 1 

Figure 3 Horizontal inefficiency for representative airport pairs 2 

3.2 Model Specification 3 

We estimate three fixed effects models (4) to quantitatively understand how different airports or seasons 4 

affect flights’ en route inefficiencies. All three models have the same explanatory variables but different 5 

dependent variables – overall en route inefficiency, terminal extension (TMA) inefficiency and direct route 6 

(DIR) extension inefficiency.  7 

In the model, we include four categorical of variables. The first two categories are departure and 8 

arrival airports. We expect that flights to or from airports with higher traffic demand will be more inefficient 9 

than the others. The third category includes the monthly fixed effects, which are treated as proxies for 10 

convective weathers. We expect that estimates for months in summer season are systematically larger than 11 

the others. The last category considers the impacts of flight length. We separate flights into six categories 12 

based on their D40A100 great circle distance: 0 – 200 nm, 200 – 400 nm, 400 – 600 nm, 600 – 800 nm, 13 

800 – 1000 nm and larger than 1000 nm. As stated in previous section, short-haul flights are prone to more 14 

inefficient en route operations. Based on the specification, we can formulate the regression model as: 15 

 16 

𝑌𝑗𝑡 = 𝛽0 + ∑ 𝛾𝑖
1 ⋅ 𝐷𝑒𝑝𝐴𝑝𝑡𝑖

33
𝑖=1 +∑ 𝛾𝑖

2 ⋅ 𝐴𝑟𝑟𝐴𝑝𝑡𝑖
33
𝑖=1 + ∑ 𝛾𝑖

3 ⋅ 𝑀𝑜𝑛𝑖
11
𝑖=1 +∑ 𝛾𝑖

4 ⋅ 𝐷𝑖𝑠𝑡𝑖
5
𝑖=1  (3) 17 

 18 

where 𝑌𝑗𝑡 is one of the three inefficiency metrics (in percentage) for flight 𝑗 at time 𝑡, 𝛽0 is the intercept, 19 

𝐷𝑒𝑝𝐴𝑝𝑡𝑖 is the departure airport 𝑖, 𝐴𝑟𝑟𝐴𝑝𝑡𝑖 is the arrival airport 𝑖, 𝑀𝑜𝑛𝑖 is the 𝑖𝑡ℎ month and 𝐷𝑖𝑠𝑡𝑖 is the 20 

flight length category 𝑖. The 𝛾𝑛
𝑚 are the regression coefficients to be estimated. 21 

3.3 Estimation Results 22 

The estimation results for model with overall en route inefficiency (Model I-I) are shown in Figure 4. The 23 

baseline for terminal fixed effects is airport TPA, while that for month and flight length are January and the 24 

longest flight length category (>1000 nm). Estimation results for the vast majority of variables are 25 

significant. Figure 4 suggests that the fixed effects for arrival airports, which range from -1.7% to 3.4%, 26 

have more variations than departure airports, which range from -2.8 to 0.2. Meanwhile, airports such as 27 

LGA and FLL have negatively correlated estimate for departure and arrival fixed effects, indicating that 28 

some airports may have very efficient departure procedure but inefficient arrival procedure, or vice versa. 29 

Flights to or from the south and east coast are in general more inefficient than those to or from the west 30 

coast. Flights to JFK double their en route inefficiencies comparing to those to FLL, which has the second 31 

highest arrival fixed effect estimate. Estimates for June, July and August are systematically higher than the 32 

other months, indicating less efficient en route performance for flights in summer season. Inefficiency 33 

decreases sharply with flight length. Flights within 200 nautical miles are 4.26% more inefficient than 34 

flights longer than 1000 nautical miles. 35 
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 1 

 2 

Figure 4 Estimation Result: Model I-I (Overall) 3 

Figure 5 and Figure 6 show the results for models with direct route extension (DIR) and terminal 4 

extension (TMA) inefficiencies as dependent variables. Flight length has a stronger impact on TMA than 5 

DIR, while the monthly fixed effects are more important for DIR. To further compare the terminal effects, 6 

we use two scatter plots shown in Figure 7 and Figure 8 to show the estimates for different airports. The 7 

plots exhibit only modest correlation, implying that the same airport may feature relatively efficient 8 

terminal procedures and relatively inefficient direct route procedures, or vice versa. Figure 9 shows the 9 

analysis of variance of for the three models. All models have fairly low R squared, especially for the first 10 

two models, which motivates us to take a more microscopic analysis in the future.  11 

 12 

 13 

Figure 5 Estimation Result: Model I-II (DIR Extension) 14 
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 1 

Figure 6 Estimation Result: Model I-III (TMA Extension) 2 

 3 

Figure 7 Comparison of Departure Airport Fixed Effects 4 
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 1 

Figure 8 Comparison of Arrival Airport Fixed Effects 2 

 3 

Figure 9 Analysis of Variance 4 

3.4 Model Extension 5 

In previous model, terminal and seasonal effects are estimated separately, however, we also want to 6 

understand the monthly variations within each airport. Therefore, we estimate a model that includes all 7 

interaction terms between airports and months. The new model can be written as: 8 

 9 

𝑌𝑗𝑡 = 𝛽0 + ∑ 𝛾𝑖
1 ⋅ 𝐷𝑒𝑝𝐴𝑝𝑡𝑖⨂𝑀𝑜𝑛𝑖

𝑁
𝑖=1 + ∑ 𝛾𝑖

2 ⋅ 𝐴𝑟𝑟𝐴𝑝𝑡𝑖⨂𝑀𝑜𝑛𝑖
𝑁
𝑖=1 ++∑ 𝛾𝑖

4 ⋅ 𝐷𝑖𝑠𝑡𝑖
5
𝑖=1  (4) 10 

 11 

Where 𝑌𝑗𝑡 is the overall inefficiency for flight 𝑗 at time 𝑡, 𝐷𝑒𝑝𝐴𝑝𝑡𝑖⨂𝑀𝑜𝑛𝑖 is a tuple of (departure 12 

airport, month) for a flight, and 𝐴𝑟𝑟𝐴𝑝𝑡𝑖⨂𝑀𝑜𝑛𝑖 is the tuple of (arrival airport, month) of a flight. 13 

With the new specification, each airport has 12 different estimates corresponding to different 14 

months. Therefore, we first average the estimates across months for every airport to show the overall 15 
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terminal effects, then select 8 representative airports to further quantitatively investigate their monthly 1 

variations. Results are summarized in Figure 10 and Figure 11, respectively. Comparing Figure 10 to Figure 2 

4, we find all the estimates are quite similar, which matches our expectation. From Figure 11, we gain some 3 

additional insights. In general, fixed effects for departure airports have a concave shape in terms of month, 4 

however, this phenomenon is not obvious for arrival airports. Airports such as BOS, SFO and LAX actually 5 

have a convex shape, indicating more efficient en route operations during the summer season for flights 6 

into those airports. 7 

 8 

 9 

Figure 10 Estimation Result (a): Model II 10 

 11 

Figure 11 Estimation Result (b): Model II 12 
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4. CONCLUSION 1 

In this research, we explore the factors influencing the flight en route inefficiency qualitatively and 2 

quantitatively. We apply fixed effects regression techniques to a two-year flight-level performance dataset 3 

to specifically quantify how departure/arrival airports and seasons impact en route efficiency. 4 

Our estimation results suggest that, consistent with our expectation and literature, flights from or 5 

to the airports in the New York metropolitan or Florida area are generally more inefficient than the others. 6 

Long-haul flights are more efficient mainly because one component of excess distance—which results from 7 

flights using fixed entry and exit points that are not on the great circle route—is roughly independent of 8 

distance. Flights that are less than 200 nautical miles are 4% more inefficient than flights longer than 1000 9 

nautical miles. In addition, flights operated during the summer season, when convective weather is more 10 

frequent, are less efficient than those in other seasons. The extended model, with specific emphasis on the 11 

monthly variations for each airport, reveals that the departure operations are strongly impacted during 12 

summer seasons, while such a phenomenon is not evident for arrivals. Moreover, the seasonal effects, 13 

though they differ in absolute magnitude, has similar patterns for geographically adjacent airports. 14 

Finally, we point out several limitations and future work of this study. First of all, the analysis of 15 

variance reports a considerably low percentage of variance explained by our fixed effect models. Although 16 

the estimates of included explanatory variables are mostly significant with reasonable signs, there are still 17 

a number of unobserved factors not being captured by our models. Secondly, all of our models focus on the 18 

macroscopic level of performance, however, we observe from Figure 2 that the variations for a specific 19 

airport pair within one month are quite pronounced, suggesting the need for a model that considers 20 

circumstances specific to each flight to explain the reason. One very important factor, which is the subject 21 

of ongoing research, is that individual flight trajectories between a given airport pair typically follow one 22 

of a limited number of pre-specified routes, which have varying levels of inefficiency. Modeling the route 23 

to which a flight is assigned can therefore be an important step in the analysis of flight inefficiency. 24 

 25 

Appendix A 26 

Table 1 List of U.S. 34 Core Airports 27 

Airport City IATA 

Los Angeles International Airport Los Angeles LAX 

Denver International Airport Denver DEN 

Charlotte Douglas International Airport Charlotte CLT 

George Bush Intercontinental Airport Houston IAH 

Phoenix Sky Harbor International Airport Phoenix PHX 

Philadelphia International Airport Philadelphia PHL 

Minneapolis-Saint Paul International Airport Minneapolis MSP 

Detroit Metropolitan Wayne County Airport Detroit DTW 

San Francisco International Airport San Francisco SFO 

Newark Liberty International Airport Newark EWR 

John F. Kennedy International Airport New York JFK 

McCarran International Airport Las Vegas LAS 

Miami International Airport Miami MIA 

LaGuardia Airport New York LGA 

Boston Logan International Airport Boston BOS 

Dulles International Airport Washington IAD 

Seattle-Tacoma International Airport Seattle SEA 

Orlando International Airport Orlando MCO 
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Ronald Reagan Washington National Airport Washington DCA 

Salt Lake City International Airport Salt Lake City SLC 

Baltimore/Washington International Thurgood Marshall Airport Baltimore BWI 

Chicago Midway International Airport Chicago MDW 

Fort Lauderdale-Hollywood International Airport Ft. Lauderdale FLL 

Memphis International Airport Memphis MEM 

Portland International Airport Portland PDX 

William P. Hobby Airport Houston HOU 

Lambert-St. Louis International Airport St. Louis STL 

San Diego International Airport San Diego SAN 

Cleveland Hopkins International Airport Cleveland CLE 

Tampa International Airport Tampa TPA 

Raleigh-Durham International Airport Raleigh-Durham RDU 

 1 

  2 
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