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During the final year of the Service Level Expectation (SLE) project the NEXTOR-II 

team refined the models, completed development of the concept evaluation software and 

carried out a variety of user outreach activities.  Specifically, much effort was devoted to 

supporting a human-in-the-loop (HITL) simulation. In addition to completing the 

software, the team produced a variety of tools to support the HITL participants. The team 

also separately reached out to flight operators to obtain both formal and informal 

feedback on system concepts and mechanisms.   

 

We now provide an overview of the basic SLE components and both give some 

perspectives and updates on them and also indicate where appropriate detail and 

background information can be found. In many cases that background information exists 

in earlier project reports.  Specifically, in this report we refer to the following reports for 

more project details:  the Year 2 Project Report, the Year 3 Project Report, the HITL 



Report and the Final Project Presentation, which is being delivered with this report. Also, 

please note the five Appendices of this report.  

 

First, it should be noted that an intuitive description of all the concepts can be found in 

the SLE project white paper given in Chapter 1 of the year 3 report.  

 

 

 

 

 

 

 
Figure 1:  NextGen Operational Response Architecture 

 
The mechanism generated by the SLE project is called COuNSEL: CONsensus Service 

Expectation Level setting. COuNSEL provides a solution to the Service Expectations step 

of the NextGen traffic management initiative (TMI) planning process given in Figure 1. 

We note that under NextGen operational concepts, the service expectations defined in 

this step should represent the consensus input of the flight operators. In fact, this is the 

primary mechanism for flight operators to provide strategic input into the planning of an 

operator response.  

 

Under the COuNSEL architecture the specific output of the consensus service 

expectation process is a vector of performance metric goals. COuNSEL specifically has 

employed three performance categories:  capacity, predictability and efficiency. Various 

prior documents, including the white paper, define the specific metrics used. The metrics 

chosen are normalized to be between 0 and 1, with 1 being the best possible value and 0 

the worst. One can view a value of 1 as indicating the best performance level for that 

performance category on a perfect-weather day. Of course, a very simplistic solution to 

this goal setting problem would be to choose a goal of 1 for each metric. However, a 

vector of three 1’s provides little insight or tradeoff guidance.  Rather one should view 

the process as starting with an assessment of the weather and traffic conditions. This in 

turn implies constraints on the set of feasible goal vectors. For example, it would 

generally be the case that on a poor weather day, it would be impossible to achieve a 

vector of three 1’s.  In general, the constraints implied by the day’s conditions would 

generate an efficient frontier of possible vector values.  Conceptually any such vector 

could be achieved on the day given an appropriate TMI. In fact, the choice between these 

vectors represents the choice among TMI strategies and provides exactly the tradeoff 

information that is sought. For example, suppose that the SLE vector was ordered as 

follows: 
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Consider the following possible vectors chosen from the efficient frontier: 

 

A: (.95, .90, .91), B: (.90, .94, .89), C: (.97, .87, .89) 

 

Suppose a particular flight operator had a very heavy emphasis on capacity. That flight 

operator when given the choice between A and B might choose A, indicating a 

willingness to increase capacity and to a less extent efficiency, while sacrificing 

predictability.  That flight operator might further be given the choice between A and C 

and choose C again in order to increase capacity while further sacrificing predictability 

and efficiency.  In this way, by choosing a particular vector, a flight operator is forced to 

make key performance tradeoffs.  

 

This discussion immediately reveals two fundamental problems to be solved. First is 

defining the set of constraints that represents the feasible space of performance goal 

vectors for a given day/environment. Second, given this space of feasible vectors how 

does one define a consensus vector and what process should be used to find such a vector. 

The COuNSEL solution to these problem and the underlying research are discussed 

respectively in Sections 2 and 1.  

 

COuNSEL could be applied in a number of different contexts. For example, it could 

potentially be applied in formulating a NAS-wide strategy for an entire day. Alternatively 

it might be applied to solve a specific regional problem, e.g. it could be applied to 

develop a strategy for a specific ground delay program (GDP). In each case there would 

be a certain set of impacted flights and flight operators.  Since each such flight operator 

will be impacted by the resulting TMI to a different degree it makes sense that the 

impacted flight operators should have varying levels of influence in the ultimate 

COuNSEL recommendation.  A weight is assigned to each flight operator to accomplish 

this and the topic of flight operator weights is discussed in Section 3. The related topic of 

the COuNSEL application context is treated in Section 4. A set of models was developed 

and experiments run to understand the relationship between the COuNSEL decisions and 

user costs. These provided the basis for both a benefits assessment and tools to support 

flight operator inputs into COuNSEL. This work is described in Section 5. The insights 

gained from various user outreach efforts is discussed in Section 6. COuNSEL is driven 

by the Majority Judgment voting mechanism. For COuNSEL to work well it is important 

for the users to vote “truthfully”.  The topic of user voting behavior and user incentives is 

discussed in Section 7. Section 8 provides background on the concept evaluation software. 

Section 9 covers practical issues regarding next project steps and Section 10 discusses 

potential applications for the SLE concepts in air traffic management that do now fall 

within the specific architecture illustrated in Figure 1. 



1. Basic Voting Mechanism and Handling a Very Large 

Space of Candidates 

A fundamental question to ask is what is the definition of a consensus vector. The theory 

that underlies COuNSEL is the Majority Judgment voting procedure.  This procedure has 

been developed and analyzed over the past several years. It can be used in a normal 

political election and specifically give a good solution to the challenge of picking a single 

winner among several competitive candidates (without the need for a runoff election). It 

also can be used in other ways, e.g. to judge athletic competitions. Its virtue lies in its 

resistance to “gaming”: it generally encourages participates to vote in a straight-

forward/truthful manner.  Background on the method can be found in the book, Balinski 

and Laraki, 2011, Majority Judgment: Measuring, Ranking, Electing, MIT Press. A more 

comprehensive discussion of why Majority Judgment provides a good approach to 

defining and finding a consensus vector can be found Appendix I of the Year 3 Report. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  COuNSEL Architecture 
 

 

It is the case, however, that Majority Judgment cannot be directly applied to the SLE 

problem. Specifically, there is a very large number (in fact infinite number) of candidates. 

A significant component of the SLE research involved developing an underlying theory 

and computational methods to deal with this challenge. Specifically, as Figure 2 

illustrates, an iterative approach is used where candidate vectors are dynamically 

generated and multiple rounds of voting are employed. The theory and methods 

associated with this approach are described in Appendix I of the Year 3 project report. 
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2. Feasible Region of Performance Metric Goal Vectors 

As discussed in the introduction, one would always want a goal vector of (1,1,1). 

However, on virtually all days, such perfect performance is not possible usually due to 

some instances of less than perfect weather. Other factors can also impact the feasible 

goal set including flight demand irregularities, equipment or infrastructure failures and 

the like.  Thus the range of feasible goal vectors will depend on the conditions of the day 

and also the degree to which TMI parameters and airlines actions allow different 

performance criteria to be traded off. For example, GDPs can be planned so as to insure 

higher throughput/capacity by delaying start times, setting higher rates, etc.  Other 

strategies might insure more predictability or efficiency. The SLE team has explored both 

analytic models and statistical analysis of historical TMIs to construct performance goal 

vector tradeoff spaces and the associated feasible region of goal vectors.  Analytic models 

are described in Appendix III of the Year 3 report and the statistical approach is 

described under Topic 4 of the Final Project Presentation and Appendix I, II and III of 

this report.  

3. Flight Operator Weights 

Each application of COuNSEL will have an associated scope limiting the impacted 

flights and/or geographic region. At one extreme COuNSEL could be applied to generate 

strategic advice for planning a ground delay program into a particular airport. Such a 

GDP would have an associated start and end time and an associated destination airport. 

Thus, the impacted flights would include all of those flights to the designated destination 

airport whose expected arrival times were between the start and end time. At another 

extreme a NAS wide strategy could be sought so the set of impacted flights could be as 

large as all flights scheduled to pass through the US airspace within a particular 24 hour 

period.  

 

In any such case, there will be a disparity of impact on each flight operator. For example, 

in the GDP case, a flight operator with a large presence at an airport could have a 

hundred or more impacted flights while another might have only a handful. In such cases, 

it seems reasonable and fair that the operator with the larger number of flights should 

have more influence over the strategy chosen. Flight operator influence can be varied by 

assigning unequal weights to each flight operator. These weights can be viewed as 

allowing each participant to have a number of “votes” greater than one. For example, 

flight operators designated for small influence could be given a weight of 1, others higher 

weights depending on the degree influence desired. The percentage of the total weight 

assigned to a flight operator would indicate the degree of influence. In particular, if a 

flight operator had more than 50% of the total weight then that flight operator would be 

able to insure its most preferred goal vector was the outcome of the COuNSEL process. 

Of course, most would consider this undesirable so a weighting scheme that assigned one 

operator a majority of weight would most likely not be considered. 

 



The SLE team tested various approaches to assigning weights. All based the weights on 

some function of the number of impacted flights associated with each flight operator (so 

that more flights implied higher weight).  The simplest scheme would assign weights in 

proportion to the number of flights – this could lead to one flight operator receiving a 

majority of the total weight or close to such a majority. Consequently, certain 

transformations were applied, e.g. functions that depended on the square root or log of 

the number of flights. While the team experimented with several ideas (see Appendix I of 

the Year 3 Report)  this is certainly a topic that deserves further study. In particular, as 

discussed in the HITL report, there could be justification in considering weighting 

functions that do not depend on the number of impacted flights.    

4. COuNSEL Application Context 

As discussed in the previous section, there would always be a context and associated 

scope to which COuNSEL would be applied. The obvious context, which is consistent 

with today’s TMI planning environment, would be to apply COuNSEL whenever a TMI 

is being considered. In this case, the broad parameters of the TMI would already be 

determined, e.g. consideration of a morning GDP for SFO airport. The output of 

COuNSEL would provide the FAA specialist planning the TMI with guidance on how to 

set the TMI parameters and could even influence the decision on whether to initiate the 

TMI at all. The longer term vision for COuNSEL is much broader. It is hoped that it 

would be able to play a role in setting a daily national or regional strategy for managing 

traffic. 

 

The SLE team did some initial research on how COuNSEL might be applied in a 

hierarchical manner. That is, a natural vision for the application of COuNSEL would be 

to do hierarchical planning where COuNSEL would be applied to determine a NAS-wide 

plan and then regionally to plan specific regional or local TMIs. An overview of this 

work is included in Appendix IV of this report (this was provided in a previous project 

deliverable but was not included in a final report so it is included here).   

5. Benefits Assessment and User Support Tools 

The SLE developed several analytic and statistical models of flight operator behavior. 

The general goal of these models was to relate the three SLE performance metrics to 

GDP parameter settings and to flight-operator-specific performance. This work looked at 

historical flight operator actions and historical flight operator performance in the 

presence of GDPs.  It also computed the SLE performance metrics for those GDPs. This 

allowed a relationship between the COuNSEL goal vector values and flight operator 

performance to be developed. Background on this research can be found in Appendix II 

of the Year 3 Report and also in Topic V of the Final Presentation. This work drove both 

a COuNSEL benefits assessments as well as the development of information and tools to 

support flight operator voting. This latter information was used to support the HITL. 



 

6. User Acceptance and Practical Aspects 

During the later stages of the project, the SLE team undertook efforts to reach out to the 

flight operator community. A presentation was made to the A4A ATC Council.  Follow 

up meetings were held with certain flight operators and a survey was administered. Most 

recently in the summer of 2014, an HITL was held that included flight operator 

participation.  The FAA command center also participated in the HITL.  These various 

activities produced a significant body of material that provided feedback from the user 

community on COuNSEL.  This feedback is analyzed and summarized in the HITL 

Report. 

7. User Voting Behavior 

The effective use of COuNSEL and more generally Majority Judgment requires that the 

users grade/vote in a truthful and consistent manner.  Specifically, a key aspect of 

Majority Judgment relative to other voting methods is that by grading candidates rather 

than simply voting yes or no, the users provide “rich” information so that multiple 

candidates can be evaluated and compared. However, if users do not grade truthfully or 

consistently, then such rich information is not provided. For example, if a user just gave a 

high grade to one candidate and a zero to the others then the system would not work well.  

At the same time, a very significant appeal of Majority Judgment is that it is resistant to 

“strategic voting” and generally users are incentivized to grade in a manner consistent 

with their true valuation of the candidates. Of course, the particular context provided by 

COuNSEL has certain unique features so that the general properties of Majority 

Judgment might not apply well in this case. With this in mind the SLE team carried out 

various analyses to determine whether in fact flight operators using COuNSEL would be 

incentivized to grade in a manner consistent with their values.  The main body of work in 

this area is provided in Appendix IV of the Year 3 Report.  This work shows that it is 

very difficult for users to realize any gain by not grading in a way consistent with their 

internal valuations. The results of the HITL also provide insight on this issue. This is 

certainly an area that deserves additional research and investigation. Such research should 

involve simulations with real airline cost functions and also further human-in-the-loop 

simulations.           

8. Concept Evaluation Software 

Concept evaluation software was created in order to evaluate the various COuNSEL 

features and also to gain feedback from potential users. The software played a central role 

in the HITL. The software supports all the principal COuNSEL features as illustrated in 



Figure 2. There are two types of users:  the ANSP/FAA (one user) and the flight operator 

(multiple users).   

 

The ANSP initiates any COuNSEL session (referred to as a poll). The key inputs required 

are: i) a list of flight operators, ii) flight operator weights and iii) a set of constraints 

defining the space of feasible performance vectors. 

 

There are two flight operator functions:  i) vector generation and ii) vector grading.   

 

To start any iteration (execution of the loop illustrated in Figure 2), the ANSP may input 

a set of candidate vectors and then present these to the flight operators for grading. As an 

option, the ANSP could request that the flight operators input candidate vectors. These 

could augment any ANSP supplied vectors or serve as the only source of vectors. In 

either case, a set of candidate vectors is provided to the flight operators who then grade 

each candidate.   

 

Once all grades are provided, the system computes the majority grade for each vector and 

determines the winner.  The ANSP then has the option of either declaring the iteration 

winner the overall winner or starting a new iteration. 

 

Instructions on the use of the software may be found both in the HITL report and also 

under Topic 6 of the Final Presentation. 

 

It should be noted that this software does not contain all the capabilities developed by the 

SLE research team. Specifically, it does not contain any of the automatic vector 

generation models. It also does not contain methods for generating the constraints 

defining the feasible region of performance goal vectors. In this way, it retains a certain 

degree of flexibility and allows various research concepts to be evaluated. 

 

9. Implementation Going Forward 

The research carried out by the SLE team thus far has certainly given a proof of concept 

for the basic approach. It is also the case that the flight operator reaction has been quite 

positive. Specifically, the user community supports the basic premise of COuNSEL, 

namely that alternate TMI strategies can be characterized in terms of tradeoffs among 

performance goals. Furthermore, today, FAA specialists and airline operational control 

personnel, make these tradeoffs (sometimes implicitly) in formulating their plans. Of 

course, this does not mean that many of COuNSEL’s details, including precise metric 

definitions, grade formats and the like do not need to be further evaluated. It is also the 

case, that the flight operators would need to develop grading strategies and internal 

support tools to make any system usable. 

 

There are many software and concept refinements that would be required before 

COuNSEL be transitioned into use in an operational setting.  No attempt will be made to 



create an exhaustive list. However, the list below provides the most significant challenges 

the SLE team could identify at this time.  

 

1) Performance-Based TMI Planning:  Going back to Figure 1, it should be noted 

that COuNSEL provides a solution to a new step in the TMI planning/operational 

response architecture. In fact, the COuNSEL output does not directly provide a 

TMI plan or TMI parameters. The vector output can be viewed as strategic advice 

for use in TMI planning. Making use of this vector requires a performance-based 

TMI planning model. For example, it could be that the various tools used for GDP 

planning, including FSM (Flight Schedule Monitor, the GDP planning tool) might 

be modified to accept as input the vector output by COuNSEL and to use this in 

setting GDP parameters. There is currently some on-going NASA-sponsored 

research that may provide a solution to the general challenge of performance-

based TMI planning. Of course, it is also the case that “more informal” solutions 

are possible. For example, it is possible that tables or policies could be created 

that converted vectors output by COuNSEL into strategic advice to be used by the 

traffic management specialist in creating the TMI plan in question.  Appendix V 

of this report provides some concepts and models performance-based GDP 

design. 

2) Generating Constraints Defining Feasible Space of Performance Vectors:  In 

concept, the application of COuNSEL requires that the weather and demand 

conditions on a particular day-of-operations be converted into the set of 

constraints defining feasible performance goal vectors. The research to date 

provides analytic models that defines these constraints for a generic GDP and also 

describes an approach to the general problem. However, much more work is 

required to operationalize these ideas. It is also the case that if the COuNSEL 

approach was used in a broader context, e.g. to plan an overall NAS strategy, then 

even more novel ideas would be required. It may be that simple approximate 

models are possible that do not depend too heavily on the conditions of the day. 

Such models could potentially provide a near-term solution that could be put in  

place quickly, e.g. in a prototype setting. 

3) Vector Generation:  The SLE research provides a well-developed theory related 

to vector generation. However, there is still work to be done to apply this 

efficiently in various practical settings. It should be noted that experience with the 

HITL indicates that various approximate/practical approaches may work quite 

well, particularly in initial implementations. For example, a set of vectors could 

be generated ahead of time that provide broad coverage of the feasible region.  

Heuristic rules could be developed to choose from among these and vectors 

generated by flight operators to provide a supply of candidate vectors at each 

COuNSEL iteration. 

4) User Acceptance:   
As discussed there is general flight operator acceptance of the concepts and 

approach underlying COuNSEL. However, much work will be required to obtain 

broader user acceptance most particularly of a specific implementation with 

specific operational concept and decision support tool.  A key aspect of obtaining 



such acceptance will be demonstrating value added provided to the flight operator 

community. 

10. Other Uses 

COuNSEL was developed to address a very specific function in the NextGen architecture 

given for generating an operational response.  In this context, COuNSEL very 

specifically generates a performance goal vector to be input to a performance-based TMI 

planning model.  However, viewed more broadly COuNSEL provides a mechanism for 

generating a consensus numeric vector that could potentially represent a range of 

planning decisions. For example, in another air traffic management (ATM) context, it 

might be reasonable to consider an architecture where the vector generated by COuNSEL 

represented specific parameters of ATM decision.  This could be relevant in any case 

where an ANSP might wish to develop a plan based on consensus advice from flight 

operators.  For example, one could imagine that the vector generated by COuNSEL 

directly represented GDP plan parameters, specifications related to a runway 

configuration change or parameters related to a strategic reroute plan. In these cases, the 

output of COuNSEL would more directly represent a planning decision and would not 

represent a strategic input into a second planning model. These ideas were discussed 

briefly during the HITL, but, of course, much further investigation would be required to 

make them a reality. 

 

  



 

 

 

 

 

 

 

 

 

 

 

APPENDIX I:  Generating Constraints to Define Feasible 

Space of Performance Vectors from a Set of Candidate Vectors 

 

 

 

 

 

 

 

 

 

 

 

  



Piecewise linear approximation of  

a concave efficient frontier from  

given set of feasible points 

Background 

In a complex decision scenario, decision makers make expensive functional evaluations for 

several feasible data points. An efficient frontier over these functional evaluations is desired for 

a deeper understanding of the decision domain. For instance, insights may be gained by 

extrapolation over the regions that were not directly evaluated by the decision makers. These 

may lead to more functional evaluations, leading to an iterative learning process. 

The efficient frontier can also be used to represent the feasible region in mathematical programs 

that may optimize some objective function. Piecewise linear inequalities that approximate the 

efficient frontier are thus of interest. 

Problem 

Without loss of generality, we assume that the efficient frontier is concave (similar to “output-

based” Data Envelopment Analysis formulations), and all data points are non-negative. 

Suppose there are � points in the � dimensional non-negative real space ℜ�
�, represented in an 

� × � matrix �. Any of these dimensions can represent the functional evaluation (“output”), 

while the others represent the underlying decision space (“input”). 

We seek to determine the set of inequalities �� ≤ � that define the concave efficient frontier 

over �, where � is � × � matrix of coefficients, � is � × 1 column vector ���,��, … , ��	�, and � 

is � × 1 column vector of Right Hand Side (RHS) coefficients. The concavity and non-negativity 

assumptions imply that all the coefficients in � and � are non-negative. 

Procedure 

The concave efficient frontier is clearly a convex hull. However, the original set of data points in 

� have to be augmented to satisfy the concavity and non-negativity assumptions. Once the 

augmented set, denoted �
, is determined, a half-space representation can be obtained using 

standard methods and software. 



Phase 1: augmenting the original data 

Three types of points need to be added.  

Step 1: add the origin, namely (0,0,..) , or the set of points describing the smallest levels on each 

dimension. 

Step 2: add the projects of maximum levels of each dimension on all the other dimensions. That 

is, add points like ���∗, 0,0, … 	, (0, ��∗, 0 … ) etc, where ��
∗ is the maximum level for �-th dimension.  

Step 3: add projections of each level of each dimension of each point on all the other 

dimensions. That is, add points like ���
�
, 0, ��

�
, … 
, (��

�
, ��

�
, 0, … ) etc, where ���

�
, ��

�
, ��

�
, … 
 is the �-

th point in the dataset. 

Note that the third step needs to be done only for the vertices found after the initial two steps 

are taken to augment the original dataset. However, the resulting approximation is equivalent: 

the inequalities defined by non-vertex points will essentially be dominated by those at the 

vertex during the convex hull half-space representation phase. This is reflected in the following. 

Alternate phase 1a: augmenting the original data 

Step 1a: same as above Step 1 

Step 2a: same as above Step 2 

Step 3a: determine the vertex points from the augmented dataset so far, using standard 

software, one such software implementation is explained below. 

Step 4a: add projections of each level of each dimension of each vertex on all the other 

dimensions. That is, add points like ���
	 , 0, ��

	 , … 	, (��
	 ,��

	 , 0, … ) etc, where ���
	 ,��

	 , ��
	 , … 	 is the �-

th vertex point in the augmented dataset. 

The original Phase 1 is simpler to execute, as it avoids an interim step of finding the vertices. 

However, the following Phase 2 may be take longer than the alternate Phase 1a due to excessive 

points. This may be a concern for larger datasets. 

Phase 2: generating the half-space representation over the augmented dataset 

This can be done using standard software, see the following for one such implementation. 

Using software to execute the procedure 

We explain how qhull (freely available from www.qhull.org) can be used for the two tasks. 



First, an input file, say input.txt has to be generated. Its first line is the number of dimensions; 

second line is number of points; followed by each point delimited with whitespace. Eg, for five 

points in three dimensions, the following input file has to be generated: 

3 
5  
0.6077181 0.8483771 0.8937495  
0.5901854 0.8812403 0.9323248  
0.6933129 0.8370321 0.8420531  
0.5197341 0.8546559 0.8597732  
0.6639922 0.8170262 0.9143827 
 

Following the Phase 1, this dataset will need to be augmented as below: 

3 
24  
0.6077181 0.8483771 0.8937495  
0.5901854 0.8812403 0.9323248  
0.6933129 0.8370321 0.8420531  
0.5197341 0.8546559 0.8597732  
0.6639922 0.8170262 0.9143827  
0 0 0  
0.6933129 0 0  
0 0.8812403 0  
0 0 0.9323248  
0.6077181 0.8483771 0  
0.5901854 0.8812403 0  
0.6933129 0.8370321 0  
0.5197341 0.8546559 0  
0.6639922 0.8170262 0  
0.6077181 0 0.8937495  
0.5901854 0 0.9323248  
0.6933129 0 0.8420531  
0.5197341 0 0.8597732  
0.6639922 0 0.9143827  
0 0.8483771 0.8937495  
0 0.8812403 0.9323248  
0 0.8370321 0.8420531  
0 0.8546559 0.8597732  
0 0.8170262 0.9143827 
 

In the alternate Phase 1a, the dataset at the end of Step 2a would be: 

3 
9 
0.6077181 0.8483771 0.8937495  
0.5901854 0.8812403 0.9323248  
0.6933129 0.8370321 0.8420531  
0.5197341 0.8546559 0.8597732  
0.6639922 0.8170262 0.9143827  
0 0 0  
0.6933129 0 0  
0 0.8812403 0  
0 0 0.9323248 
 

Running the following command will result in vertices: 

qhull Fx < input.txt 
 

Its output is: 

8 
1 
2 



3 
4 
5 
6 
7 
8 
 

The first line shows the number of vertices, followed by the line numbers of points in the input 

file – starting from 0 – that form the vertices. In this example, all points except the very first one 

(0.6077181,0.8483771,0.8937495) – which would have been marked 0 – are vertices. The Step 4a 

would only use these eight points, and use this augmented set of 20 points as input for Phase 2: 

3 
20  
0.5901854 0.8812403 0.9323248  
0.6933129 0.8370321 0.8420531  
0.5197341 0.8546559 0.8597732  
0.6639922 0.8170262 0.9143827  
0 0 0  
0.6933129 0 0  
0 0.8812403 0  
0 0 0.9323248  
0.5901854 0.8812403 0  
0.6933129 0.8370321 0  
0.5197341 0.8546559 0  
0.6639922 0.8170262 0  
0.5901854 0 0.9323248  
0.6933129 0 0.8420531  
0.5197341 0 0.8597732  
0.6639922 0 0.9143827  
0 0.8812403 0.9323248  
0 0.8370321 0.8420531  
0 0.8546559 0.8597732  
0 0.8170262 0.9143827 
 

Note that original Phase 1 had 24 points, while the alternate Phase 1a has only 20 points. In this 

toy example, this would not make any difference in Phase 2, but in very large settings, this may 

start to matter. However, the vertex determination step could also take some time. 

Phase 2 of generating half-space representation uses a different parameter to the same program: 

qhull n < input.txt 
 

The output is as below: 

4 
10 
0.6487738823205065 0.6239839949833628 0.4355874465860791 -1.338885695202095 
0.9267486846573778      0 0.3756818806993756 -0.9588709103877315 
    -0     -1     -0      0 
0.236216022534486      0 0.9717005663773112 -1.045351783953538 
    -0      1     -0 -0.8812403 
     0     -0      1 -0.9323248 
    -1     -0     -0      0 
     0      0     -1     -0 
     1     -0     -0 -0.6933129 
0.3939998618229221 0.919110498734248     -0 -1.042490177687624 
 

The first line is the number of coefficients (4), which is one more than the number of dimensions 

(3). Next line states the number of half-spaces (10). The following lines give the coefficients in 

the form of �� − � ≤ 0. Thus, the last column has to be multiplied by -1 to obtain �. 



Three of these are just non-negativity constraints: 

    -0     -1     -0      0 
    -1     -0     -0      0 
     0      0     -1     -0 
 

Further, three are upper bounds for each dimension: 

    -0      1     -0 -0.8812403 
     0     -0      1 -0.9323248 
     1     -0     -0 -0.6933129 
 

The remaining ones clearly have non-negative coefficients (the last column is negative, as 

explained above). 

0.6487738823205065 0.6239839949833628 0.4355874465860791 -1.338885695202095 
0.9267486846573778 0 0.3756818806993756 -0.9588709103877315 
0.236216022534486 0 0.9717005663773112 -1.045351783953538 
0.3939998618229221 0.919110498734248 -0 -1.042490177687624 
 

If there is a dominating point, that is, all its dimensions have the maximum values in the 

dataset, than the solution results in only the above 2� (6 in our case) constraints. 
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 Feasible Performance Vector Generation 

Introduction 

At the beginning of this project, feasible performance vectors are generated using an 

analytical model based on continuous approximation and deterministic queueing theory. 

Last March, we proposed an alternative approach to generate the vectors based on 

historical precedent. Here, the procedure in this method will be discussed. The input to 

our analysis is weather forecast and demand forecast at the GDP decision time. The 

output from our analysis is feasible expected performance vectors given those forecasts. 

There are two steps in this procedure to generate feasible vectors for a given day: 

Step 1. Identify similar historical days using weather forecast. The realized capacity 

scenarios (series of AARs) of these similar days will be used as possible actual capacity 

scenarios for this given day. Detail of this step can be found in the attached file, named as 

terminal weather forecast similarity_final (submitted to ICRAT 2014).  

Step 2. Calculate the expected performance using the possible actual capacity scenarios 

from similar historical days, designed planned AARs, and demand forecast. Details 

regarding this step are presented below. 

Performance metrics 

In this analysis, we focus on three performance metrics: capacity utilization, efficiency 

and predictability.  

1. Capacity utilization 

This metric is defined to measure how much capacity is planned when the GDP is first 

implemented against the capacity under VMC condition. The equation is as follows: 

   
∑              

∑          
 

where, the AARs are for each quarter hour.  

2. Efficiency 

Efficiency is defined to measure how much delay has been transferred to the ground by 

the end of the program. 

   
∑               

∑              
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where, delays are first estimated for each flight j and then summed up. Delays are 

calculated based on the planned rates, the scenario-dependent actual rates, and the 

demand.  

3. Predictability 

Predictability is defined to measure the amount of unexpected delay in addition to the 

delay planned in the first GDP with respect to the amount of realized delay at the end. 

When the realized delay is less than planned delay for all the flights, then predictability is 

valued as 1. 

     
∑                                       

∑                 
 

where, delays are first estimated for each flight j and then aggregated. As before delays 

are calculated based on the planned rates, the scenario-dependent actual rates, and the 

demand.  

Feasible Performance Vector Generation 

Each performance metric,  , is a function of three terms: 

  ⃗⃗ : scheduled demand, a series of quarter-hour arrival demand   

     
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗: airport acceptance rate planned in the initial GDP, a series of quarter-hour 

arrival capacity rates.  

     
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗: actual airport acceptance rate, a series of quarter-hour arrival capacity rates 

For a given demand— ⃗⃗  and planned AARs—    
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, the expectation of the performance 

metric is then expressed as: 

 ̅( ⃗⃗      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)  

∑  ( ⃗⃗      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗       

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) 

  
 

where,   is the number of actual AAR scenarios—      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, which are identified through 

similarity analysis as in Step 1. Before, the set of       
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is used as the set for     

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 

Since       
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is from similar days, there is not much variability in it. As a result,     

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

and the expectation of the performance metrics does not have much variability neither. 

Current plan:       
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ will still be identified from similarity analysis, whereas a different 

approach (under construction) will be used to generate     
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. The rough idea is to find a 

lower bound and an upper bound of AARs for each quarter-hour and generate     
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 
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based on this bounds. For instance, an extreme conservative      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ would be the series of 

lower bounds for each quarter-hour.  



 

 

 

 

 

 

 

 

 

 

APPENDIX III:  Assessing Terminal Weather Forecast 

Similarity for Strategic Air Traffic Management 

  



 

Information from historical daysInformation given on the day

Weather Forecast 

(WF)

Day 1 Day 2

WF 1 WF 2

Capacity

profile 1

Day 3 Day 4

WF 3 WF 4

Day 5

WF 5

Demand Profile

Capacity

profile 3

TFM Decision Process

TFM Decision

Assessing Terminal Weather Forecast Similarity for 

Strategic Air Traffic Management 
 

Yi Liu*, Michael Seelhorst, Alexey Pozdnukhov, Mark Hansen 

Institution of Transportation Studies 

University of California, Berkeley, CA 94720 

liuyisha@berkeley.edu 

Michael O. Ball 

Robert H. Smith School of Business 

University of Maryland, College Park, MD 20742 

 

 
Abstract—in this paper, we propose a semi-supervised learning 

algorithm to assess similarity in weather forecast for strategic air 

traffic management. The distance metric between weather 

forecasts is supervised by pre-defined similarity and dissimilarity 

relationships. The distance metric considers the difference in 

each weather variable and also the interaction between two 

weather variables’ differences. Using the proposed algorithm, 

two case studies are performed at Newark Liberty International 

Airport (EWR), where historically similar days in 2011 are 

identified for two given days-of-operation in 2012. The results 

show that similar weather forecasts could lead to very different 

airport acceptance rate and runway configuration outcomes in 

terms of capacity profiles and selections of runway configuration. 

Since differences in different weather phenomena are weighted 

differently in the distance metric, the algorithm could produce 

similar days to a given day which have considerable differences 

in some unimportant weather phenomena.   

Keywords-Air Traffic Management, Decision Making, Similar 

Days, Data Mining, Terminal Weather Forecast   

I.  INTRODUCTION 

Air traffic managers today are typically limited to personal 
experience to make Traffic Flow Management (TFM) 
decisions [1, 2]. These decisions include whether or not there is 
a need for Traffic Management Initiatives (TMIs), such as 
Ground Delay Program (GDP) and Airspace Flow Program 
(AFP), and how TMIs should be planned when they are 
considered necessary. Managers with different experiences or 
different preferences may create different TMI plans for the 
same situation. This unpredictability in decision creates 
uncertainty for National Airspace System (NAS) users and may 
hinder them from taking effective proactive actions. To address 
this issue, systematic approaches should be developed to better 
inform and assist managers in TFM decision making.  

One way of achieving this goal is to provide capacity 
profiles based on similar historical days to TFM decision 
makers. As illustrated in Fig. 1, two pieces of information are 
needed for traffic managers to make a TFM decision: a demand 
profile, which is known on a given day-of-operation; and a set 
of capacity profiles, which are to some degree uncertain. There 
is considerable research literature concerning the use of 
capacity profiles in the TMI planning process [3-7] and, to a 
lesser extent, the generation of these capacity profiles.  

Reference [8] classifies historical capacity profiles into a 
small number of nominal scenarios for a given airport by using 

K-means clustering, which does not incorporate weather 
forecast. Reference [9] generates different capacity profiles for 
San Francisco International (SFO) airport for a given day by 
using empirical distributions of weather forecast error. 
Reference [10] creates capacity profiles also for SFO by using 
cumulative distribution functions of fog clearance time 
estimated from historical data. In [9] and [10], the source for 
weather information is exclusive to SFO and the models 
simplify the capacity profile by assuming an Airport 
Acceptance Rate (AAR) of 30 arrivals per hour before the fog 
clearance and 60 arrivals per hour afterwards. Reference [11] 
overcomes these limitations by basing the analysis on 
publically accessible Terminal Aerodrome Forecasts (TAFs) 
and developing possible capacity profiles from historical 
capacity scenarios. In this work, they find similar historical 
days to a given day using K-means clustering or Dynamic Time 
Warping (DTW) based on TAF.  

Figure 1.  Flowchart of Traffic Flow Management Decision Making 

In our work, we borrow the logic of generating capacity 
profiles in [11], which is shown in the upper part of Fig 1. 
First, similar historical days are identified to a given day by 
assessing the similarity between the weather forecasts. Then 
the AAR time series of the historically similar days are used as 
the candidate capacity profiles.  

As mentioned, in [11], two ways to identify similar days to 
a given day are proposed: TAF clustering and DTW. In the 
former, the day is classified into one of several TAF clusters 
which has the shortest Euclidean distance between its centroid 
and the given day’s TAF. The days in that cluster are then the 
similar days. In the DTW approach, the similarity of a given 
day TAF to all the historical TAFs is measured and the 
probability of a capacity profiles is inversely proportional to 
the degree of similarity. In both methods, the weather 
phenomena, such as visibility and ceiling, are weighted the 



same in the distance metrics. Moreover, while there are many 
plausible ways of defining the distance metrics (Euclidean, city 
block, etc.), the choice of distance metric employed in this 
work is rather arbitrary.  

This research addresses these issues by applying a semi-
supervised learning algorithm to measure similarity between 
weather forecasts, where the distance metric is automatically 
learnt from similarity/dissimilarity relationships pre-defined by 
the users. The metric captures the differences in each weather 
phenomenon and also the interactions between different 
weather phenomena. The weights of the squared and the 
interaction terms are estimated based on the pre-defined 
similarity/dissimilarity relationships. 

We describe the proposed methodology in Section II. In 
Section III, we describe the data that is used in this analysis. In 
Section IV, we present results from our case studies at Newark 
Liberty International Airport (EWR) airport. Finally, we 
conclude the paper in Section V.   

II. METHODOLOGY 

In this analysis, we apply a semi-supervised algorithm to 
identify similar days to a given day by learning distance metric 
[12]. The proposed algorithm consists of two steps: First, we 
learn the distance metric between hourly weather forecasts. 
Second, we identify similar days by selecting the days with 
small total distances in the weather forecast, summing over the 
hourly distances. In Sections A and B, we will elaborate on the 
two steps, respectively. 

A. Learning Distance Metrics  

In this section, we will explain how we generate the 
distance metric between hourly weather forecasts. Consider 
learning a distance metric of the form: 

  (       )  ‖       ‖ 
 √         

               (1) 

where, WFi ∊ ℝn is the weather forecast vector for hour i; n is 
the dimension of the vector. For this analysis, we use the 
following pieces of weather information found in the forecasts: 
ceiling, visibility, with speed and direction, as well as the 
presence of thunderstorm and snow. In the general case, A is a 
full matrix with diagonal and off-diagonal distance 
coefficients. The diagonal coefficients are the weights of the 
squares of the differences in each weather variable. The off-
diagonal coefficients are the weights of the interaction term 
between two weather variable differences. If we set A = I, then 
the expression becomes the Euclidean distance. If we restrict A 
to be diagonal, this then corresponds to learning a metric in 
which the different weather attributes are given different 
weights without any interaction between  them. In all cases, the 
required constraint on A is that it must be positive semi-
definite, A ≽ 0. This ensures dA to be a metric—satisfying non-
negativity and the triangle inequality.  

The key step in this approach is finding the A matrix and 
associated distance metric. We learn a distance metric that 
respects predetermined similarity between hours. Suppose we 
know that certain pairs of the hourly WFi’s are similar: 

  (       )                                 (2) 

We can then learn a distance metric dA respecting this so 
that similar hours end up close to each other. This is achieved 
by solving the following optimization problem: 

    ∑ ‖       ‖ 

 

(       )    (3) 

    ∑ ‖       ‖ (       )    ,  (4) 

 ≽        (5) 

where, the objective is to minimize the squared distance 
between the pairs of points in S. Since this is trivially solved 
with A = 0, we add the constraint (5) to ensure that A does not 
collapse the dataset into a single point. Here, D can be a set of 
pairs of hourly forecasts known to be dissimilar if such 
information is available; otherwise, it can be the complement 
of S. The objective function is linear in the parameters A, and 
both of the constraints can be verified to be convex. Thus, the 
optimization problem is convex, which enables us to derive 
efficient, local-minima-free algorithms to solve it. We consider 
this algorithm as semi-supervised since it learns a data 
transformation guided by user-defined S and D matrices as 
opposed to a fully supervised predictive model targeted at 
forecasting targets from sample input-output pairs. 

The question that remains unanswered is how we define 
similarity and dissimilarity sets. In other words, we need to 
find the pairs of hours that belong to the sets S and D. The 
ultimate goal of identifying weather forecast similarity is to 
assist in air traffic management decision-making. Towards this 
goal, we define two hours as similar if all of the following 
conditions hold:  

 The runway configuration is the same; 

 Both hours have the same Meteorological 
Conditions (MC), either Instrument MC (IMC) or 
Visual MC (VMC);  

 The absolute difference in actual AARs is smaller 
than SAAR, where SAAR is the AAR similarity 
threshold. 

On the contrary, we define two hours to be dissimilar if they 
have different runway configurations, MCs and the differences 
in AARs are larger than the dissimilarity threshold, DiAAR.  

There is certainly more than one way to generate S and D. 
More research is needed to explore good definitions of the two 
sets. The definition of these sets is a place where feedback 
from TFM decision makers could be incorporated to tailor the 
similarity assessment to their need. In this paper, we focus on 
assessing terminal weather forecast similarity for airport 
capacity profile generation. But the methodology we use has 
generality and can be applied in other contexts. For instance, 
similarity in en route weather could be assessed with S and D 
defined using en route network characteristics such as traffic 
density. 

B. Identifying Similar Days 

In this section, using the learnt distance metric between 
hourly weather forecasts from Section A, we will describe how 
similar days are identified for a given day. Assume the 
concerned time horizon is from hour Ts to hour Te. One way of 
defining the distance of weather forecast between two days is 



to sum up the squares of the hourly distances with the time 
horizon: 

     ∑ ‖           ‖ 

   
    

   (6) 

where, DJ,K is the total distance between day j and day k; WFJ,i 
is the weather forecast in hour i on day J; WFK,i is the weather 
forecast in hour i on day k. For a given day, similar days are 
then days with small total distances. The user can decide on the 
number of similar days, Ns, to look at.  

Once historically similar days are identified following the 
proposed mechanism, the time series of the actual runway 
configuration, MCs, and AARs on these days may then be 
provided to traffic managers as references for decision making.  

III. DATA  

The analysis uses data from two sources: Aviation System 
Performance Metrics (ASPM) and Terminal Aerodrome 
Forecast (TAF). ASPM report provides hourly data on runway 
configuration, MC and AAR.  

Historical TAFs provides hourly data for terminal weather 
forecasts. The authors developed a Matlab script to download 
the historical TAF information from www.ogimet.com. Each 
TAF was read in as a text file. Afterwards, a parser written in 
Matlab was used to convert the text files to user-friendly 
numerical data. Weather variables created based on the TAF 
data are listed below. 

First, we have two indicator variables representing the 
presence of thunderstorms—TS,and snow—Sn. Visibility in the 
forecasts ranges from 0.25 miles to 7 miles. We expect the 
effect of the visibility to be much stronger as it approaches 
zero, also when the value is below 4 as opposed to above 4, 
where 4 is the threshold for visual approach conditions. We use 
two variables for visibility, including a natural log transform—
Vis1 = log(visibility) and a discontinuity to capture the 
nonlinear effects—Vis2 = max(0,log(visibility/4)). Ceiling in 
the forecasts ranges from 100 feet to 25,000 feet. Similar to 
visibility, two variables are defined for ceiling: Ceil1 = 
log(ceiling) and Ceil2 = max (0,log(ceiling/3000)), where 3000 
feet is the threshold of visual approach condition. The TAFs 
contain both wind speed and direction. We include three 
variables to capture this information. When wind direction is 
specified (some observations have variable wind direction), we 
decompose the wind speed into two components: speed from 
the North to the South and speed from the East to the West. 
The direction of the wind blowing from north to south and 
from east to west is considered positive. When the wind 
direction is variable, we consider wind by its absolute speed 
only. This gives us three wind variables: 

 Ws: absolute wind speed. It equals to the reported wind 
speed when wind direction is unspecified, and zero when 
wind direction is specified 

 WN: component of wind speed from the North to the South. 
It equals to zero if wind direction is unspecified 

 WE: component of wind speed from the East to the West. It 
equals to zero if wind direction is unspecified 

The weather forecast vector, WF, is then a 9-dimensional 
vector: 

                                            (7) 

For each day, a new TAF is updated every two to three 
hours. Therefore, we should determine which forecast to use 
before assessing weather forecast similarity between a given 
day and the historical days. Since the purpose of identifying 
similar days is to assist in traffic management decision-making, 
one way to select the TAF is to refer to the traffic management 
decision time. At the decision time, we compare the most 
recently issued TAF on the given day to the most recent TAFs 
that were available at this time for the historical days.  

Each TAF forecasts weather for 24 hours from the forecast 
issuance time. The number of hours that will be compared to 
identify similar days is determined by the planning horizon.    

For the case study, we pulled ASPM and TAF hourly data 
for EWR for years 2011 and 2012. TAF data is missing for 
2011 November. We thus removed the observations for 
November from the ASPM data as well.    

IV. EWR CASE STUDIES 

In this section, we apply the proposed methodology to 
terminal weather forecast similarity assessment at EWR. This 
airport is selected since it is one of the most congested airports 
in the US and has many GDPs. Two case studies are performed 
for two selected days-of-operation: September 20, 2012 and 
June 8, 2012. There was no GDP on September 20, 2012 and 
there was a GDP on June 8, 2012 due to wind. The GDP was 
planned to start at 4:47 pm and end at 9 pm but actually ended 
at 5:43 pm.  

We first use the ASPM and TAF data from 2011 to 
generate the A matrix. Then, using the learnt distance metric, 
we identify five similar days for each of the two days. When 
defining the S and D sets, we set the thresholds for similarity 
and dissimilarity in AARs as 1 and 7 arrivals per hour 
respectively. The results for the A matrices and similar days are 
shown and discussed in the following two subsections.  

A. Similar Days for Sep 20, 2012 

There was no GDP on 9/20/2012. Many of the EWR GDPs 
start around noon (without specification, time is assumed as 
local time) and planned for around 10 hours on average [13]. 
Accordingly, we set the time horizon of the analysis from noon 
to midnight. All the analysis results are then based on hourly 
data between noon and midnight from ASPM and TAF, 
including estimation of the A matrix. Moreover, the most 
recent TAF that was available at noon is referenced for values 
of the weather variables.  

The estimation results for the A matrix are shown in Table 
I, containing values of diagonal and off-diagonal elements. The 
diagonal entries are distance coefficients (also referred to as 
weights) for the squares of the differences in each weather 
variable. The off-diagonal entries are distance coefficients for 
the interaction terms of two weather variables’ differences.  

To explain the interpretation of the A matrix, we offer a 
simple example. For a pair of hours, assume all the other 
weather conditions are the same but there could be differences 

http://www.ogimet.com/


in thunderstorm and snow conditions. Then the distance metric 
is reduced to 61.15·(ΔTS)

2
 + 7.05·(ΔSn)

2
 + 2×4.78·ΔTS·ΔSn, 

where ΔTS and ΔSn are the thunderstorm and snow differences 
between these two hours. Since thunderstorm happens more 
often in the summer season and it snows only in the winter, the 
interaction term ΔTS·ΔSn almost always takes the value -1 or 
0. Therefore, the distance metric can take three values: 

 61.15 if one hour has thunderstorm, the other hour 
does not have thunderstorm, and they have the same snow 
condition (presumably no snow); 

 7.05 if one hour has snow, the other hour does not 
have snow, and they have the same thunderstorm condition 
(presumably no thunderstorm); 

 61.15+7.05−2×4.78 if they have different 
thunderstorm and snow conditions. 

These indicate that there is a large difference between a 
thunderstorm hour and a non-thunderstorm hour, whereas there 
is less difference between a snow hour and a non-snow hour. If 
one hour has thunderstorm and the other hour has snow, the 
distance between these two hours is smaller than two hours 
with different thunderstorm conditions but the same snow 
conditions. This indicates how the interaction term affects the 
distance between 2 hours in which snow and thunderstorm 
conditions are both different.  

TABLE I.  ESTIMATION RESULTS ON A MATRIX 

a. All the weights are scaled by a factor of 1000. 

 

The diagonal coefficients are the weights of the squared 
terms of each weather variable’s differences. But they cannot 
be interpreted as the relative importance of the squared 
differences to the distance since the values of the weather 
variable differences vary. In order to compare the contributions 
of each weather phenomenon to the distance, we create five 
hypothetical A matrices for the five types of weather 
phenomena based on the full A matrix: thunderstorm, snow, 
visibility, ceiling and wind. The hypothetical A matrix for a 
weather phenomenon is created by keeping the diagonal 
distance coefficient(s) of the weather variables belonging to 
this weather phenomenon and, where applicable, their 
interaction coefficients, and replacing the rest of the entries 
with zero. Following this, there will be 1 non-zero element for 
thunderstorm and snow respectively, 4 non-zero elements for 
visibility and ceiling respectively, and 9 non-zero elements for 
wind, as highlighted in boxes in Table I. Hypothetical distances 
between the hourly TAFs are then estimated for each pair of 
hours selected for this analysis using the five hypothetical A 
matrices. For each weather phenomenon, these hypothetical 

distances could also be estimated by using the full A matrix and 
assuming no differences in the variables representing the other 
weather phenomena. Now, we can compare the contributions 
of different phenomena to the distance by comparing the values 
of these hypothetical hourly distances.  

In Table II, we present summary statistics for the 
hypothetical hourly distances for the five weather phenomena. 
The median value is the highest for wind, followed by ceiling, 
whereas the rest of the median values are zero. These results 
indicate that typically wind differences account for most of the 
distance and ceiling differences are responsible for the rest. 
This is mainly because wind differences and ceiling differences 
are common whereas more than half of the pairs of hours have 
the same values for thunderstorm, snow and visibility 
variables, according to the percentages of non-zeroes. If we 
only consider non-zero observations for each weather 
phenomena, the average distances due to thunderstorm 
differences are the largest on average. This indicates that two 
hours would be viewed as the most different when one has 
thunderstorm and the other one does not. The average distances 
due to visibility and ceiling differences are similar in 
magnitude, and much higher than the distance due to wind 
differences. Out of the five differences, wind differences have 
the smallest average impact when considering only the non-
zero values. As a result, even though wind difference is the 
most common difference, the average distance induced by this 
difference across both zero and non-zero observations is 
smaller than the average distance generated by the visibility 
differences and ceiling differences (as shown in Row 1 in 
Table II), which contribute significantly to the distance metric 
when they occur, and they do a fair amount of the time.  

TABLE II.   STATISTICS OF HYPOTHETICAL HOURLY DISTANCES  

a. All the weights are scaled by a factor of 1000. 

 

In order to visualize the similarity between each hour, we 
have applied a metric Multi-Dimensional Scaling (MDS) [14] 
to the pair-wise distance matrix. An MDS plot provides a 
distance-preserving visualization of the data such that the 
pairwise distances in 9-dimensional space are reproduced in 2 
dimensions with minimum distortion. It helps analyzing the 
effect of the metric transform learned by the algorithm and the 
scaling applied to original variables. An example of the MDS 
plot is presented in Fig. 2 for Ceil1—log(ceiling), where the 
color scale corresponds to the values of the original Ceil1 
variable. As shown, the ceiling value roughly increases from 
the right to the left. Hours with similar ceiling values are 
clustered to some degree. We have considered similar plots for 
all the variables in MDS projection. They are not shown here 
but the information is conveyed in Fig. 2. The plot of visibility 
has similar trend as ceiling, where the value increase from the 
right to the left. Hours with thunderstorms and snow locate at 

Variables TS Sn Vis2 Vis1 Ceil2 Ceil1 Ws WN WE 

TS 61.15a 4.78 4.14 15.52 -11.74 12.30 2.22 -0.47 -0.56 

Sn 4.78 7.05 20.28 -7.67 -3.80 3.84 -0.10 -0.07 -0.10 

Vis2 4.14 20.28 66.55 -17.37 -29.90 30.09 2.91 -0.75 -0.81 

Vis1 15.52 -7.67 -17.37 39.05 -40.69 41.07 8.46 -1.35 -1.31 

Ceil2 -11.74 -3.80 -29.90 -40.69 87.12 -87.76 -15.24 2.64 2.61 

Ceil1 12.30 3.84 30.09 41.07 -87.76 88.41 15.35 -2.66 -2.63 

Ws 2.22 -0.10 2.91 8.46 -15.24 15.35 2.76 -0.47 -0.46 

WN -0.47 -0.07 -0.75 -1.35 2.64 -2.66 -0.47 0.08 0.08 

WE -0.56 -0.10 -0.81 -1.31 2.61 -2.63 -0.46 0.08 0.08 

Statistics Thunderstorm Snow Visibility Ceiling Wind 

Mean 3.5a 2 47 94.6 24.5 

Median 0 0 0 3.4 20.1 

Max 247.3 84 491.5 809.9 320.8 

% non-zero obs. 1.43 2.41 31.3 71.6 99.6 

Mean of non-zero obs. 247.3 84 150.3 132.1 24.6 
Median of non-zero obs. 247.3 84 149 5.5 20.2 

Std. of non-zero obs. 0 0 103.4 190.9 21.8 



 

the bottom and on the top, respectively, which are far away 
from the majority of the points. This indicates that a pair of 
hour with different thunderstorm or snow conditions is more 
different from that with different ceiling or visibility 
conditions. In the plots of wind variables, there is no obvious 
trend in the spatial distribution of hours with different wind 
speeds and wind components. This indicates that the 
contribution of wind difference to the hourly distance is similar 
in the range of wind speed we have here. The cluster of good 
weather conditions is enlarged in the plot. They are hours with 
high ceiling, high visibility, no thunderstorm, and no snow.  

 

Figure 2.  Metric Multi-Dimensional Scaling Results 

Using (3), the similar days from 2011 were identified for 
Sep 20, 2012, based on the estimated A matrix and values of 
the TAF variables. The five similar days are selected as the five 
days with the smallest total hourly distances in TAF compared 
to the given day. All the hours were VMC except for the hour 
from 5 pm to 6pm on Sep 20, 2012. The actual AARs, selected 
runway configurations and the GDP decisions of the similar 
days and the given day are summarized in Table III. The first 4 
similar days all share the same runway configuration with the 
given day for a considerable duration, whereas 12/3/2011 has a 
totally different configuration. The AARs of the first two 
similar days are similar to the given day, especially in terms of 
sum of AARs. The AARs of the last three similar days are 
smaller than those of the given day for about half of the time, 
with the largest hourly difference as 10 arrivals per hour. 

The forecasted ceiling, wind speed (Ws) and Wind direction 
(Wdir) for the given day and similar days are summarized in 
Table IV. There were no thunderstorms or snow and visibility 
was 7 mile for all the hours. The weather conditions are very 
similar for these days except for wind. The wind directions in 
the similar days are very different from those on the given day, 
except 12/3/2011. The overall wind speed is generally small for 
all days. This indicates that the difference in wind direction is 
not very important in determining similarity when wind speed 
is not high. The weather conditions on 12/3/2011 are similar to 

the given day. However, the AAR and runway configuration of 
12/3/2011 and 6/8/2012 are different according to Table III. 
This indicates that capacity profiles and selection of runway 
configuration could be very different given similar terminal 
weather forecasts. This could be a result of inherent uncertainty 
in weather forecasts, or non-weather factors (such as demand 
and facility outages) that also influence the runway 
configuration and AAR.  

TABLE III.  ACTUAL OBSERVATIONS ON 09/20/2012 AND ITS 

HISTORICALLY SIMILAR DAYS 

a. This hour was IMC where the rest were all VMC. 

b. GMT time is 4 hours ahead of local time during daylight saving and 5 hours ahead otherwise. 

 

On similar day 3, a GDP was planned from 3 pm to 10 pm 
local time. There were no GDPs for the other 4 similar days. 
Therefore, if the demand profile for the given day is similar to 
that from the historically similar days, the similarity analysis 
would suggest no GDP on the given day, which was the actual 
TFM decision. 

  

 Given Day Similar Day 1 Similar Day 2 
 9/20/2012 9/16/2011 7/27/2011 

 No GDP No GDP No GDP 

Hour (GMT
b
) AAR Rwy Conf. AAR Rwy Conf. AAR Rwy Conf. 

9/20/16Z 46 4R, 11|4L 46 4R, 11|4L 48 4R, 11|4L 

9/20/17Z 46 4R, 11|4L 46 4R, 11|4L 48 4R, 11|4L 
9/20/18Z 46 4R, 11|4L 46 4R, 11|4L 48 4R, 11|4L 

9/20/19Z 46 4R, 11|4L 46 4R, 11|4L 48 4R, 11|4L 

9/20/20Z 41 4R | 4L 46 4R, 11|4L 38 4R | 4L 
9/20/21Z 38a 4R | 4L 46 4R, 11|4L 38 4R | 4L 

9/20/22Z 38 4R | 4L 46 4R, 11|4L 38 4R | 4L 

9/20/23Z 46 4R, 11|4L 46 4R, 11|4L 38 4R | 4L 
9/21/00Z 44 4R | 4L 46 4R, 11|4L 38 4R | 4L 

9/21/01Z 38 4R | 4L 46 4R, 11|4L 38 4R | 4L 

9/21/02Z 38 4R | 4L 46 4R, 11|4L 38 4R | 4L 
9/21/03Z 38 4R | 4L 46 4R, 11|4L 38 4R | 4L 

 Similar Day 3 Similar Day 4 Similar Day 5 

 10/30/2011 7/9/2011 12/3/2011 

 GDP No GDP No GDP 

Hour (GMT) AAR Rwy Conf. AAR Rwy Conf. AAR Rwy Conf. 

9/20/16Z 36 4R | 4L 42 4R | 4L 38 22L | 22R 
9/20/17Z 36 4R | 4L 48 4R, 11 | 4L 38 22L | 22R 

9/20/18Z 38 4R | 4L 41 4R | 4L 38 22L | 22R 

9/20/19Z 38 4R | 4L 38 4R | 4L 38 22L | 22R 
9/20/20Z 38 4R | 4L 38 4R | 4L 38 22L | 22R 

9/20/21Z 38 4R | 4L 38 4R | 4L 38 22L | 22R 
9/20/22Z 38 4R | 4L 38 4R | 4L 38 22L | 22R 

9/20/23Z 38 4R | 4L 38 4R | 4L 38 22L | 22R 

9/21/00Z 38 4R | 4L 38 4R | 4L 38 22L | 22R 

9/21/01Z 38 4R | 4L 38 4R | 4L 38 22L | 22R 

9/21/02Z 38 4R | 4L 38 4R | 4L 38 22L | 22R 

9/21/03Z 38 4R | 4L 38 4R | 4L 38 22L | 22R 



TABLE IV.  TAF FOR 09/20/2012 AND ITS HISTORICALLY SIMILAR DAYS 

 

B. Similar Days for June 8, 2012 

There was a GDP planned on 6/8/2012 from 4:47 pm to 9 
pm due to wind. The program was actually ended earlier at 
5:43 pm. To find similar days for assisting in decision-making, 
we set the time horizon as 4 pm to 10 pm. All the analysis 
results are then based on hourly data on this time horizon from 
ASPM and TAF, including estimation of the A matrix. The 
most recent TAF that was available at this time is referenced 
for values of the weather variables. It is worth mentioning that 
the A matrix is different from before because we are using a 
different set of pairs of hours and different TAFs. Usually, the 
most recent TAFs prior to noon and 4 pm are issued around 10 
am and 1:30 pm, respectively. The results for this case study 
are shown in Tables V to VIII. There were no thunderstorms or 
snow and visibility was 7 miles for all the days. 

As shown in Tables V and VI, compared to the previous 
case, snow and ceiling differences are weighted more where 
the other three differences are weighted less.  

TABLE V.  ESTIMATION RESULTS ON A MATRIX 

a. All the weights are scaled by a factor of 1000. 

TABLE VI.   STATISTICS OF HYPOTHETICAL HOURLY DISTANCES  

a. All the weights are scaled by a factor of 1000. 

The capacity profiles and the runway configurations are 
similar between the given day and the first four similar days, as 
shown in Table VII. But again, differences are observed in the 
weather forecasts. The AARs and runway configurations are 
not very similar for the given day and similar day 5, neither are 
the weather forecasts. Specifically, an additional arrival runway 
(Runway 11) was used for much of the time on similar day 5, 
which greatly increased the arrival capacity. Further study is 
required to determine if this might have been predicted based 
on the weather forecast. 

Out of the five similar days, only 8/1/2011 had a GDP. If 
the demand profiles are similar between 6/8/2012 and the 
similar days, then the analysis suggests no GDP for this day. 
Although there was a GDP for the given day, it was cancelled 
less than 1 hour after its implementation. The suggestion would 
have been helpful since it appears a GDP was not necessary on 
the given day.  

TABLE VII.  ACTUAL OBSERVATIONS ON 06/08/2012 AND ITS 

HISTORICALLY SIMILAR DAYS 

 

 

 

 

 

 

 

 Given Day Similar Day 1  Similar Day 2  
 9/20/2012 9/16/2011  7/27/2011  

Hour (GMT) Ceiling Ws Wdir Ceiling Ws Wdir Ceiling Ws Wdir 

9/20/16Z 40 9 100 250 12 340 250 11 340 

9/20/17Z 40 9 100 250 12 340 250 11 340 

9/20/18Z 40 9 100 250 9 320 250 11 340 
9/20/19Z 250 8 140 250 9 320 250 10 310 

9/20/20Z 250 8 140 250 9 320 250 10 310 

9/20/21Z 250 8 140 250 9 320 250 10 310 
9/20/22Z 250 8 140 250 9 320 250 8 300 

9/20/23Z 250 8 140 250 9 320 250 8 300 

9/21/00Z 250 5 110 200 7 330 250 8 300 
9/21/01Z 250 5 110 200 7 330 250 4 300 

9/21/02Z 250 5 110 200 7 330 250 4 300 

9/21/03Z 250 5 110 200 7 330 250 4 300 

 Similar Day 3 Similar Day 4 Similar Day 5 

 10/30/2011 7/9/2011 12/3/2011 

Hour (GMT) Ceiling Ws Wdir Ceiling Ws Wdir Ceiling Ws Wdir 

9/20/16Z 250 14 330 250 13 330 250 7 30 

9/20/17Z 250 14 330 250 13 330 250 7 30 
9/20/18Z 250 14 330 250 13 320 250 6 140 

9/20/19Z 250 14 330 250 13 320 250 6 140 

9/20/20Z 250 13 320 250 13 320 250 6 140 
9/20/21Z 250 13 320 250 13 320 250 6 140 

9/20/22Z 250 13 320 250 13 320 250 6 140 

9/20/23Z 250 13 320 250 13 320 250 6 140 
9/21/00Z 250 13 320 250 13 320 250 6 140 

9/21/01Z 250 6 320 250 8 340 250 6 140 

9/21/02Z 250 6 320 250 8 340 250 6 140 
9/21/03Z 250 6 320 250 8 340 250 6 140 

Variables TS Sn Vis2 Vis1 Ceil2 Ceil1 Ws WN WE 

TS 19.46 32.41 8.61 16.16 -53.73 53.02 5.42 -2.12 -1.46 

Sn 32.41 54.03 13.18 27.53 -88.80 87.64 8.99 -3.51 -2.41 

Vis2 8.61 13.18 27.74 -5.05 -34.19 33.42 2.92 -1.24 -0.84 

Vis1 16.16 27.53 -5.05 19.81 -38.65 38.30 4.21 -1.59 -1.10 

Ceil2 -53.73 -88.80 -34.19 -38.65 155.17 -153.03 -15.27 6.04 4.14 

Ceil1 53.02 87.64 33.42 38.30 -153.03 150.93 15.07 -5.96 -4.08 

Ws 5.42 8.99 2.92 4.21 -15.27 15.07 1.52 -0.60 -0.41 

WN -2.12 -3.51 -1.24 -1.59 6.04 -5.96 -0.60 0.24 0.16 

WE -1.46 -2.41 -0.84 -1.10 4.14 -4.08 -0.41 0.16 0.11 

Statistics Thunderstorm Snow Visibility Ceiling Wind 

Mean 5.9 7.7 43.6 128.7 34.5 

Median 0 0 0 7.7 28.6 
Max 139.5 232.4 458 894.5 278.9 

% non-zero obs. 4.19 3.33 35.8 74.4 99.5 

Mean of non-zero obs. 139.5 232.4 121.7 173 34.6 
Median of non-zero obs. 139.5 232.4 108.3 10.7 28.3 

Std. of non-zero obs. 0 0 85.3 247.2 27.3 

 Given Day Similar Day 1 Similar Day 2 
 6/8/2012 8/1/2011 12/30/2011 

 GDP GDP No GDP 

Hour (GMT) AAR Rwy Conf. AAR Rwy Conf. AAR Rwy Conf. 

6/8/21Z 39 22L | 22R  32 22L | 22R  38 22L | 22R 

6/8/22Z 38 22L | 22R  32 22L | 22R  38 22L | 22R 
6/8/23Z 38 22L | 22R  35 22L | 22R  38 22L | 22R 

6/9/00Z 38 22L | 22R  35 22L | 22R  38 22L | 22R 

6/9/01Z 38 22L | 22R  35 22L | 22R  42 22L | 22R 
6/8/21Z 38 22L | 22R  35 22L | 22R  42 22L | 22R 

 Similar Day 3 Similar Day 4 Similar Day 5 

 7/23/2011 12/31/2011 5/1/2011 
 No GDP No GDP No GDP 

Hour (GMT) AAR Rwy Conf. AAR Rwy Conf. AAR Rwy Conf. 

6/8/21Z 38 22L | 22R  38 22L | 22R 52 11, 22L | 22R 

6/8/22Z 38 22L | 22R  46 11, 22L | 22R 52 11, 22L | 22R 

6/8/23Z 38 22L | 22R  38 11, 22L | 22R 52 11, 22L | 22R 
6/9/00Z 38 22L | 22R  38 22L | 22R 49 22L | 22R 

6/9/01Z 38 22L | 22R  38 22L | 22R 38 22L | 22R 

6/8/21Z 38 22L | 22R  38 22L | 22R 38 22L | 22R 



TABLE VIII.  TAF FOR 06/08/2012 AND ITS HISTORICALLY SIMILAR DAYS 

V. CONCLUSIONS AND FUTURE WORK 

In this work, we propose a semi-supervised algorithm for 
assessing weather forecast similarity for air traffic 
management. The distance metric between hourly TAFs is 
automatically learnt from similarity and dissimilarity 
relationships pre-defined by comparing the actual outcomes 
(AAR, runway configuration and MC) for the hours. Distance 
coefficients for the squared differences in the weather variables 
and the coefficients for the interaction between two weather 
variables’ differences are estimated. Then distance between 
two days is calculated as the sum of the squared hourly 
distances over a given time horizon. Finally, the degree of 
similarity of a historical day to a given day is inversely 
proportional to the distance between them.  

Using the proposed algorithm, we perform two case studies 
at EWR, where historically similar days from 2011 are 
identified for 9/20/2012 and 6/8/2012 respectively. The 
distance metric shows that wind difference is the most common 
weather difference at EWR. However, on average, ceiling and 
visibility differences contribute most to the hourly TAF 
distances. A day with severe thunderstorms or heavy snow has 
the largest TAF distance compared to a good weather day. 

Comparing the AAR and runway Configuration outcomes, 
and TAFs of the given day to the similar days, we learn that 
similar weather forecasts can lead to different outcomes, which 
demonstrate that the uncertainty in TFM might be unavoidable 
given the inherent uncertainty in weather forecast. It is also 
observed that wind direction could be very different for similar 
days when wind speed is small. This indicates that difference 
in the wind direction may not be important in determining the 
outcomes, when the wind speed is below a certain threshold. 
More work should be done to find this threshold.  

Summarizing out two case studies, there was no GDP on 
9/20/2012, and for its five historically similar days, only one 
day had GDP. There was a GDP planned for five hours on 
6/8/2012 but was cancelled four hours earlier. Out of the 
historically similar days for 6/8/2012, only one day had GDP. 
Assuming similar demand profiles, then the analysis would 
suggest no GDP in either case based on the past decisions, and 
this would indeed have probably been the better course of 
action given the early cancellation on 6/8/2012. 

This work is still at its preliminary research stage. In the 
on-going work, we are improving the current method and 
exploring other approaches to similarity assessment under the 
same idea of learning distance metric. One alternative way to 
supervise is defining similarity/dissimilarity relationship based 
on the realized performance such as delay cost, rather than 
actual AAR, runway configuration and MC. In this case, the 
distance metric will be learned for a pair of days instead of a 
pair of hours. Moreover, this will change the flowchart shown 
in Fig. 1 because demand profile will also be used in 
calculating delay cost. As a result, similarity will be defined 
based on weather forecast and also demand.  
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 Given Day Similar Day 1  Similar Day 2  
 6/8/2012 8/1/2011  12/30/2011  

Hour (GMT) Ceiling Ws Wdir Ceiling Ws Wdir Ceiling Ws Wdir 

6/8/21Z 250 12 270 250 10 260 250 6 190 

6/8/22Z 250 12 270 250 10 260 250 6 190 

6/8/23Z 250 12 270 250 10 260 250 6 190 
6/9/00Z 250 12 270 250 10 260 250 6 190 

6/9/01Z 150 12 300 250 8 290 250 5 160 

 Similar Day 3 Similar Day 4 Similar Day 5 

 7/23/2011 12/31/2011 5/1/2011 

Hour (GMT) Ceiling Ws Wdir Ceiling Ws Wdir Ceiling Ws Wdir 

6/8/21Z 150 12 280 40 9 290 200 10 160 
6/8/22Z 150 12 280 40 9 290 200 10 160 

6/8/23Z 150 12 280 40 9 290 200 10 160 
6/9/00Z 150 12 280 40 9 290 200 10 160 

6/9/01Z 250 10 280 250 10 290 150 7 160 



 

 

 

 

 

 

 

 

 

 

APPENDIX IV:  Architectures for Hierarchical Application of 

COuNSEL for Strategic Operational Planning 
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1. INTRODUCTION 

Air traffic congestion frequently occurs in the national airspace system (NAS) due to adverse weather, high 

demand or other disturbances. When congestion is foreseen, traffic management initiatives (TMIs), such as 

ground delay program (GDP) and airspace flow program (AFP) are called to balance demand with 

capacity. In the current air traffic management system, TMI decisions are discussed between Federal 

Aviation Administration (FAA) traffic specialists and flight operator personnel in the form of strategic 

planning telecons. The telecons allow flight operators to interact with managers and express their opinions 

on flow management strategies. The interactions are legitimate and desirable given that that they allow the 

NAS users who are impacted by various FAA decisions to help the FAA understand their priorities and the 

impact of FAA actions (1). At the same time, since the interaction are verbal and the input focuses on 

TMI parameters rather than service level expectations (SLE)—expected system performances from the 

TMI designs, the decision-making process can be ad hoc and subjective. In light of these, Ball et al. (2) 

proposes a SLE-oriented mechanism to consider input of all involved flight operators in a systematic way 

and generate an output that can represent the consensus of these flight operators (1, 2). The TMI planning 

process under this mechanism is illustrated in Figure 1. 

 

 

FIGURE 1: Proposed Traffic Management Initiative Planning Process 

The proposed TMI planning process consists of four steps. The first step is to generate capacity 

profiles for the concerned time horizon in the future based on weather forecast. A capacity profile is 

defined as a time series of capacity rates. Due to uncertainty in weather forecast, there will be a set of 

capacity profiles that are possible to realize. Work has been performed to identify these capacity profiles 

and their probability distribution, mainly in the context of GDP planning (3, 4, 5). Step 2 generates a set 

of SLE metric vectors using the identified capacity profile distribution. Here, we consider demand is 

known with certainty at the TMI decision time. When designing a TMI, we make a plan on the capacity 

profile. The planned capacity profile, together with the given demand, can determine other TMI plan 

parameters, such as TMI start and end times. For flights affected in the TMI horizon, we will assign them 

plans that are different from schedules. For instance, controlled times of arrivals/departures are assigned 

to flights scheduled to arrive between start time and end time in the GDP, where the controlled times are 

usually later than scheduled times of arrival/departure (STAs/STDs). According to the flight schedules 

and new plans, we can estimate the value of the SLE metric vector for the TMI design. Multiple criteria 
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can be applied for evaluating TMI performance at the system level (6, 7), such as efficiency and 

predictability, and thus the service level metric vector are multi-dimensional. Because of uncertainty, at 

the planning stage, we do not know the actual capacity profile that will realize at the end of the day or the 

actual performance that a TMI plan will lead to. Instead, we can estimate the expectation of the 

performance by considering the probabilistic distribution of the actual capacity profiles. In other words, 

we can quantify the SLE metric that a TMI plan is associated with. Different flight operators may have 

different preferences on TMI plans depending on their airline cost models (8, 9) or utilization functions 

(10). As a result, different flight operators will prefer different SLE metric vectors. Step 3 is then 

performed to find one consensus SLE metric vector out of all the submitted vectors by operators. 

Swaroop and Ball (11) have proposed a voting mechanism to reach consensus in an equitable and 

confidential way. The last step—Step 4—in the planning process is to identify the consensus TMI plan 

that provides expected service at the consensus SLE level. One possible way is using Step 2 to making a 

look-up table between TMI plans and SLE metric vectors, and selecting the plan with corresponding SLE 

vector closest to the consensus vector as the consensus plan.  

The proposed process changes the focus of the discussion between traffic specialists and flight 

operators while planning a TMI. Instead of discussing on TMI parameters, the discussion will be on SLE 

metric vectors. It is then of interest to study the SLE metrics and their relationships with TMI plans. In 

this paper, we define SLE metrics and present a model linking program designs to these metrics for GDP, 

which is one of the most common TMIs in the United States. GDPs are implemented when there is 

imbalance between arrival demand and arrival capacity, usually due to adverse weather. The motivation 

of this program is to transform airborne delay in the terminal space of the arrival airport to ground delay 

at the departure airports. In the literature, most of studies have focused on minimizing the expected delay 

cost when designing GDPs (12, 13, 14, 15). Different from the cost optimization work, we are not aimed 

in designing an optimal GDP but demonstrating the relationship between GDP parameters and SLE 

metrics. Liu and Hansen (10) studies this relationship using continuous approximation and deterministic 

queueing models based on a small set of key GDP parameters. Here, we develop the models based on 

flight schedules and capacity profiles. 

The remainder of the paper is organized as following. In section 2, we will describe the data used 

in this analysis. In section 3, we will introduce our GDP design model and GDP SLE metrics. In section 

4, we will illustrate our methods with two case studies, one for Newark Liberty International Airport 

(EWR) and one for San Francisco International Airport (SFO). Finally, we conclude our paper in section 

5. 

2. DATA 

The data source required in the methodology is the Metron Aviation Flight Scheduler Analyzer (FSA). 

The FAS data is based on aggregate demand lists (ADL) of the traffic flow management system. The data 

provides two types of information for historical GDPs: GDP parameter information and individual flight 

information. GDP parameter information includes historical GDP decisions for all GDP plans. After the 

initial implementation, the program may be revised with updated parameters. The ADL data records the 

planned capacity profiles, issuance times, start times, and end times of the initial GDP plan and the 

subsequence plans if applicable. The planned capacity profile provides the airport acceptance rates 

(AARs) for each 15-minute interval between GDP start time and end time. When a GDP is activated at a 

destination airport, usually not all the arriving flights are delayed. Flights, that are geographically further 

than the GDP scope or have departure times close to the GDP plan issuance time, are exempted and 

assigned no delay in the GDP. The ADL data also keeps the record of exemption criteria for the historical 

GDPs. At the individual flight level, information is available for the scheduled/controlled times of 

departure and arrival for each flight. When there is a GDP revision, these times are updated accordingly. 

The ADL data records these times for each GDP plan. More information regarding ADL data can be 

found in the paper by Liu and Hansen (6). The ADL data at SFO and EWR airport in year 2011 is pulled. 

This includes 177 GDPs at SFO and 155 at EWR.  
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3. METHODOLOGY 

In this section, we will introduce our methodology on generating SLE metric vectors for GDP based on 

flight schedule, planned capacity profiles and possible actual capacity profiles and their probabilistic 

distribution. For each planned capacity profile, the SLE metric is estimated as a weighted average of the 

realized system performances over all the possible capacity profiles that may realize: 

 

𝑀𝑖
𝑘̅̅ ̅̅ = ∑ 𝑝𝑗 ∙ 𝑀𝑖,𝑗

𝑘
𝐽

𝑗=1
 

 

where, 𝑀𝑖
𝑘̅̅ ̅̅  is SLE metric for performance goal 𝑘 with planned capacity profile 𝑖; 𝑝𝑗 is the probability that 

the actual capacity profile is profile 𝑗  and there are 𝐽  possible capacity profiles; 𝑀𝑖,𝑗
𝑘  is the realized 

performance for performance goal 𝑘 if capacity profile 𝑖 is planned and capacity profile 𝑗 is the actual 

capacity profile. The planned capacity profile may be selected by referring to the possible actual capacity 

profiles but this is not a necessity. Following this, the SLE metric vector for plan 𝑖 is written as (𝑀𝑖
1̅̅ ̅̅ ,…, 

𝑀𝑖
𝐾̅̅ ̅̅̅), where 𝐾 is the dimension and equal to the number of performance goals considered.   

In order to quantify the SLE metric vector, we need to measure the realized system performances 

for each pair of planned and actual capacity profiles. In section 3.1, we discuss the system performance 

metrics that are considered in GDP design. In section 3.2, we describe out algorithm in estimating these 

metrics and generating the corresponding GDP parameters. In the current algorithm, we focus on 

expected performance from the initial GDP plan and do not look at the impact from GDP revisions on the 

performance. After the initial implementation, GDP may end earlier or later than planned depending on 

actual weather. If weather condition is better than expected, actual capacity is sufficient for executing the 

initial GDP plan and flights all arrive at their initial CTAs. If weather condition is worse than expected, 

because capacity was overestimated, some flights will arrive later than their initial CTAs and the 

unplanned extra delays are taken as airborne delay. More discussion can be found in section 2.   

3.1 System Performance Criteria and Metrics 

In this section, we present criteria and associated metrics for evaluating GDP plans. Three performance 

goals are considered: capacity utilization, efficiency and predictability. The criterion for efficiency is the 

same as in an early work by the authors (6). The criteria for the other two goals are defined differently, 

but the concepts are similar. As in the early work, the criteria are defined to be dimensionless, simple and 

robust. 

 Capacity utilization is used to measure how much arrival capacity is utilized in the GDP plan. 

When implementing a GDP, AARs are planned for each 15-minute interval between GDP start time and 

GDP end time. Controlled times of arrival (CTAs) are assigned to GDP affected flights according to the 

planned AARs. The metric of capacity utilization is defined as the ratio of the total number of assigned 

arrival time slots to the sum of slots that could have been assigned assuming visual meteorological 

condition (VMC) capacity and infinite demand, over the GDP horizon. The metric is written as  

 

𝑀𝑖,𝑗
1 = 𝛼𝑐𝑢,𝑖,𝑗 =

𝑁𝑃,𝑖
𝑁𝑉𝑀𝐶,𝑖

 

 

where, 𝛼𝑐𝑢,𝑖,𝑗 is the capacity utilization metric with planned capacity profile 𝑖 and actual capacity profile 

𝑗; 𝑁𝑃,𝑖  is the count of planned arrivals between GDP planned start time and end time when capacity 

profile 𝑖 is planned; 𝑁𝑉𝑀𝐶,𝑖 is the count of arrivals that could have been landed assuming VMC capacity 

and infinite demand during the same period. Under this definition, the capacity utilization for a given plan 

is independent from the capacity profile that will realize, and thus the expectation of capacity utilization 

(SLE metric for capacity utilization) is the same as the value estimated from this metric. The metric 
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encourage us to maximize throughput and avoid underestimating capacity. As the metric increases, the 

plan is more optimistic and there is a larger chance that the GDP will end later than planned.  

 Efficiency is defined referring to the motivation of GDP: transforming airborne delay to cheaper 

ground delay. There should be no airborne delay is the most efficient GDP. However, given uncertainty in 

the planning process, airborne delay may be unavoidable in the case of a late weather clearance. The 

metric is defined the ratio of total realized ground delay to total realized total delay and written as 

 

𝑀𝑖,𝑗
2 = 𝛼𝑒,𝑖,𝑗 =

∑ 𝐺𝐷𝑖,𝑗,𝑘𝑘

∑ 𝑇𝐷𝑖,𝑗,𝑘𝑘
 

 

where, 𝛼𝑒,𝑖,𝑗 is the efficiency metric with planned capacity profile 𝑖 and actual capacity profile 𝑗; 𝐺𝐷𝑖,𝑗,𝑘 is 

the ground delay incurred by flight 𝑘 for the same pair of capacity profiles; 𝑇𝐷𝑖,𝑗,𝑘  is the total delay 

incurred by flight 𝑘, equal to realized ground delay plus realized airborne delay. Different from capacity 

utilization metric, GDP efficiency metric depends on the actual capacity profile and its expectation (SLE 

metric for efficiency) is the weighted average of efficiency over all possible actual capacity profiles. Also, 

efficiency degrades if we are optimistic in planning capacity rates, even though this is benefiting capacity 

utilization.  This happens because the efficiency metric aims at transforming more delay to the ground but 

not minimizing the total delay cost. As a result, efficiency increases when we are more conservative. In 

the case of a late weather clearance, total delay is larger than ground delay for some flights. Moreover, the 

actual GDP end time is later than planned and more flights will be delayed. In the estimation of the 

efficiency metric, we involve all the flights that are delayed in the GDP.  

 Predictability is defined to capture the accuracy in estimating capacity rates. In the strategic 

planning telecons, most of the debate is on setting capacity rates. On one hand, we want to make sure 

available capacity will be effectively utilized. On the other hand, we also appreciate the accuracy of the 

guess on capacity rates. The former is considered in the capacity utilization and the latter is considered by 

predictability metric. Using the planned capacity profile, we identify planned GDP start time and end time 

for the given demand. For the same delay, a hypothetical planned start and end times can be identified 

assuming one of the possible capacity profile were planned. Define a time horizon with start time as the 

earlier one out of the two start times and end time as the later one. For all the 15-minute intervals on this 

time horizon, we calculate the ratio of the minimum of the planned capacity rates and the capacity rates 

that may realize to the maximum of the two, and then sum these ratios over the time horizon to obtain the 

value of predictability. Mathematically, the predictability metric is written as  

 

𝑀𝑖,𝑗
3 = 𝛼𝑝,𝑖,𝑗 =

1

𝑇
∑

𝑚𝑖𝑛 (𝑃𝐴𝐴𝑅𝑖,𝑡 , 𝐴𝐴𝐴𝑅𝑗,𝑡)

𝑚𝑎𝑥 (𝑃𝐴𝐴𝑅𝑖,𝑡 , 𝐴𝐴𝐴𝑅𝑗,𝑡)

𝑇

𝑡=1
 

 

where, 𝛼𝑝,𝑖,𝑗 is the predictability metric with planned capacity profile 𝑖 and actual capacity profile 𝑗; 𝑡 is 

the index for the 15-minute interval and 𝑇 is the total number of intervals; 𝑃𝐴𝐴𝑅𝑖,𝑡 is the planned airport 

acceptance rate for interval 𝑡 given plan capacity profile as 𝑖; 𝐴𝐴𝐴𝑅𝑗,𝑡 is the actual airport acceptance rate 

for interval 𝑡 when the actual capacity profile is 𝑗. Similar to efficiency metric, predictability of a GDP 

plan depends on the capacity profile that turns out to be and its expectation (SLE metric for predictability) 

is the weighted average of predictability over all possible actual capacity profiles. Predictability increases 

as the accuracy of AAR estimates. Where an aggressive/conservative decision benefits capacity 

utilization/efficiency, predictability is penalized in either way. 

3.2 GDP Design  

3.2.1 GDP Planned Start Time and End Time 

To estimate the metrics, we first need to identify GDP affected flights, which are the flights scheduled to 

arrive on GDP time horizon. GDP start time and end time define the beginning and end of the predicted 
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capacity-demand imbalance. Following this definition, GDP should start when arrival demand starts to 

exceed capacity and delay starts to develop in the system; GDP should end when delay vanishes and there 

is no excess demand. As shown in Table 1, the historical observations match the definition for start time 

reasonably but not for end time. Table 1 summarizes descriptive statistics for historical GDPs at SFO and 

EWR in 2011. As mentioned earlier, GDPs can be revised after the initial implementation. The statistics 

presented are for the initial GDP plans. Six GDP characteristics are interested: start queue length—the 

length of arrival queue at historical GDP start time; first flight delay—delay for the flight scheduled to 

arrive at start time; end queue length—the length of arrival queue at historical GDP end time; last flight 

delay—delay for the flight scheduled to arrive at end time; max queue length—the maximum length of 

arrival queue in the system for a historical GDP; total delayed flights—the number of flights that were 

scheduled to arrive between start time and end time.  

TABLE 1: Descriptive Statistics of the Initial Plans of GDPs at SFO and EWR in 2011 

  SFO EWR 

  Start 

queue 

length 

First  

flight  

delay 

(min) 

End  

queue 

length 

Last  

flight  

delay 

(min) 

Max 

queue 

length 

Total 

GDP 

flights 

Start 

queue 

length 

First  

flight  

delay 

(min) 

End  

queue 

length 

Last  

flight  

delay 

(min) 

Max 

queue 

length 

Total 

GDP 

flights 

Min 0 0 0 0 13 68 0 0 0 0 11 160 

1st quartile 1 1.6 5 6.6 24 157 1 1.9 5 7.8 27 332 

Median 2 3.8 13 18 30 192 3 5 13 21.3 35 387 

Mean 3 6.2 17 28.6 35 230 5 9.5 23 45.9 44.5 379 

3rd quartile 4 7.5 22 32.4 39 247 6 10.6 28 48.8 50 435 

95th percentile 8 15 32 67 52 454 10 19 48 90.7 68 470 

Max 24 52.5 88 194.9 102 582 39 117 221 825.5* 228 545 

* Only two GDPs have last flight delays at this magnitude. Weather was severe on these two days and capacity was low at 16 

arrivals per hour for a long period.     

 

On average, at GDP start time, the queue length is 3 for SFO GDPs and 5 for EWR, and the flight 

delay is 6.2 minutes for SFO GDPs and 9.5 minutes for EWR. These numbers are much larger at GDP 

end time. Also, there are more cases where the queue length and flight delay are considerably large at 

GDP end time, according to the 3rd quartiles and 95th percentiles. Theoretically, the start time and end 

time should be deterministic when demand is known and capacity profile is given. However, uncertainty 

in the weather forecast may lead to differences between the realized values and planned values for these 

times. This could have been considered by the traffic specialists when they made the decisions. Compared 

to end time, start time is closer to the decision time, and can be decided with more confidence. Setting end 

time is more difficult because it is hours in the future. There are two possible approaches to addressing 

the uncertainty: set an earlier end time, then extend the program if it is needed; set a longer end time, then 

cancel the program if needed. The former method benefits capacity utilization, whereas the latter method 

has less risk in efficiency. The former method may also lose control of the program because there are not 

enough flights on the ground to absorb delay. The choice depends on the traffic specialist running the 

program. Either way, the planned end time is more like a placeholder. In addition, there may be ambiguity 

in understanding GDP end time. GDP end time may also be defined as the capacity recovery time instead 

of delay clearance time. The difference between these two times could be ignorable if there is not much 

queue before capacity recovery time. However, delay clearance time should always be later than capacity 

recovery time because it takes time for delay to vanish after capacity increases. Finally, there could be 

man-made deviation in the GDP end time data because conventionally a GDP can only end by 15-minute 

period at 14, 29, 44 or 59 minutes past the hour (12). In our data, we observe that the end time for the 

initial GDP plans is always 59 minutes past the hour. As a result, historical start time can be referred to 
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for calibrating our criteria for GDP start time but historical end time should not be used for the calibration 

for the end time.  

The statistics of max queue length and total GDP flights indicate that GDPs are planned only 

when a considerable number of flights would be delayed in the air otherwise. Because of fluctuation in 

the demand, there are occasions when several flights were delayed with small delays but then delay 

cleared. GDPs are not necessary for these occasions. Similarly, we cannot simply define a GDP start time 

as the time when there is 3 (or 8, 95th percentile) delayed flights in the system, or the time when some 

flight has 6.2 minute (or 15 minute, 95th percentile) delay. To address this, we look at average delay over 

a certain number of flights. If the average delay over 𝑛𝑡 flights exceeds 𝑑𝑡 minutes, where 𝑛𝑡 is the flight 

count threshold and 𝑑𝑡 is the delay threshold, then the GDP start time is defined as the scheduled arrival 

time of the first flight in the 𝑛𝑡 flights. There are many possible pairs of the thresholds. We select the pair 

which yields the smallest squared difference between estimated start time and actual start time on 

average. The objective is formulated as 

 

min
𝑛𝑡,𝑑𝑡

∑ (𝑆̂𝑛𝑡,𝑑𝑡,ℎ − 𝑆ℎ)
2𝐻

ℎ=1

𝐻
 

 

where, 𝑆̂ℎ is the estimated start time for GDP ℎ with count threshold and delay thresholds as 𝑛𝑡 and 𝑑𝑡 
respectively; 𝑆ℎ is the actual start time; 𝐻 is the total number of GDPs. Because there is too much noise in 

the historical GDP end time data, the thresholds for end time cannot be identified in the same way. We 

use the same pair of thresholds for end time and identify it using mirror logic: if the average delay over 𝑛𝑡 
flights drops below 𝑑𝑡 minutes, then the end time is defined as the scheduled arrival time of the last flight 

in the 𝑛𝑡 flights.  

3.2.2 Arrival Time Slot Assignment 

After we define the GDP time horizon and identify the GDP affected flights, we need algorithm to assign 

time slots to these flights so that we can estimate the performance metrics. Moreover, the assigned time 

slots are required for calculating average delay for identify start/end times. Two approaches are developed 

for this purpose, which are referred to as a flexible approach and a fixed approach respectively. The input 

is scheduled arrival times and planned capacity rates. In the flexible approach, we employ the idea of 

deterministic queueing model, where the CTA for each flight is calculated as 

 

𝐶𝑇𝐴𝑘 = 𝑚𝑎𝑥 (𝐶𝑇𝐴𝑘−1 + 𝐼𝐴𝑘 , 𝑆𝑇𝐴𝑘) 
 

where, 𝐶𝑇𝐴𝑘 is the arrival time slot for flight 𝑘 and 𝐶𝑇𝐴𝑘−1 is the arrival time slot for the flights 

before flight 𝑘; 𝐼𝐴𝑘 is the inter-arrival time between flight 𝑘 and the flight before; 𝑆𝑇𝐴𝑘 is the scheduled 

arrival time for flight 𝑘. The inter-arrival time is determined by the capacity rate. The capacity rate is for 

each 15-minute interval, and thus the inter-arrival time between flights for each interval is equal to 15 

divided by the capacity rate. To be consistent with the ration-by-schedule rule, the flights are sorted by 

their STAs before assigning time slots. Flight delays are then calculated as the differences between CTAs 

and STAs.   

In the fixed approach, we first generate arrival time slots based on the capacity rate for each 15-

minute interval and then assign them to the affected flights according to ration-by-schedule. The inter-

arrival time between flights is equal to 15 divided by the capacity rate. For each 15-minute interval, the 

first time slot is the beginning of the interval, the second time slot is the second time slot plus the inter-

arrival time, and the other time slots are assigned accordingly until the end of the interval. The first time 

slot for the next 15-minute interval is the beginning of the next interval and thus the time slots in the 

successive intervals are independent. At first thought, the fixed approach seems to be naive but it can be 

proved to be a very reasonable method for the purpose of estimating SLE metric vectors. Due to limited 

space, we are not elaborating the reason here.  
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The slot assignment algorithm is used for locating the CTAs in the initial GDP plan and also the 

actual arrival times. When actual capacity profile is better than planned, we stick to the plan and the 

actual arrival times are the same as the assigned CTAs. GDP start and end as planned. When actual 

capacity profile is worse than planned, we use the initial CTAs as demand and re-assign time slots using 

the actual capacity rates. The update time slots are the actual arrival times. Since we do not consider 

revision, the extra flight delay from the revision is taken as airborne delay. GDP will end later than 

planned when delay vanishes. 

We do not consider exemption in identifying GDP start and end times but assigning time slots. 

When there is exemption, we first assign CTAs to the exempt flights by taking their STAs as the only 

demand. Then, we assign CTAs to non-exempt flights use the remaining capacity. This is easier for the 

fixed approach where we simply assign the rest of time slots to the non-exempt flights. It is more 

complicated in the flexible approach. From the GDP start time, we assign time slots to non-exempt flights 

using the flexible approach equation. If the assigned time slot is within ±inter-arrival time of a time slot 

already assigned to an exempt flight, then this time slot will be moved to an inter-arrival time after the 

assigned slot to the exempt flight.  

3.3 Summary 

The SLE based GDP design process is summarized in Figure 2. For each GDP design, the SLE metrics 

are the expectations of the performance metrics. Exemption criteria are set as an exogenous decision 

variable. Different capacity profiles can be planned and generate different GDP time horizons and 

different sets of time slots. Using our algorithm, a mapping table can be constructed between GDP 

designs and their SLE metric vectors. For each selected SLE metric vector, we are able to identify the 

corresponding GDP design.  

   

 

FIGURE 2: Service Level Expectation based GDP Design 

4. CASE STUDIES 

The information of demand and the actual capacity profile distribution is summarized in Figure 3 for both 

case studies. Hourly observations are shown but the analysis is performed at quarter-hour level. The EWR 

demand is from May 23, 2011 and SFO demand is from Aug 29, 2011. For EWR case,we perform 

analysis to generate the possible capacity profiles by assessing weather forecast similarity between the 
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given day (May 23, 2011) and historical days. The method is described in an earlier work (4) and not 

presented here. All the possible capacity profiles are equally likely to realize. The capacity profile 

distribution for the SFO case is borrowed from the work by Mukherjee and Hansen (5). The capacity rate 

is assumed to be 30 arrivals per hour before fog clears and 60 afterwards. So it is sufficient to show the 

plot of probability mass function of fog clearance time. As seen in the right-bottom plot, the fog is most 

likely to clear between 10 am and noon. Pilot studies show that there is little difference in SLE metric 

vectors estimated by the flexible and fixed approaches. We thus perform case studies using the fixed 

approach since the algorithm is more efficient.  

 

FIGURE 3: Demand and Possible Capacity Profiles in the Case Studies  

4.1 EWR Case Study Results  

The count and delay thresholds for identifying GDP start time are 15 flights and 14-minute delay. The 

delay is more than the mean first flight delay in Table 1 for EWR. When queue starts to develop, flight 

delay increases quadratically before capacity recovers and thus average delay over delayed flights is more 

than the first flight delay.  

 GDP designs and their corresponding SLE metrics are summarized in Table 2. GDP issuance 

time, when the GDP decisions are made and reported, is set as 10 am. Flights are exempted if their 

scheduled departure times are earlier than 10 am. Each possible capacity profile in Figure 3 is selected as 

a planned profile. In total, we have 14 planned capacity profiles.  

As in the upper-left plot in Figure 3, demand level is high between 11 am and 11 pm. For the high 

demand period, capacity profiles 9 and 11 have the highest capacity rates and shortest GDP durations if 

they are selected as planned profiles. It is noticed that capacity rates drops after midnight in the profile 9. 

However, the demand level is low so no GDP is needed. The worst capacity profile is 8, with 29 arrivals 

per hour until 5 am. If this is the case, then a 17-hour long GDP is needed.  Other cases are in between 

and most designs are giving long GDPs.  This is because we picked a day with severe weather. On this 

historical day, GDP was planned from noon to midnight. From top to the bottom, capacity profiles 

become worse, which decreases capacity utilization expectation but usually benefits efficiency 
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expectation. As we become more conservative, capacity is not effectively utilized but it is more likely that 

actual weather will be better than expected. As a result, there is a lower chance of airborne delay and 

efficiency increases. Predictability is higher for ‘moderate’ capacity profiles, which are located in the 

middle of the bottom-left plot in Figure 1, such as 4 and 5. Out of the three, efficiency performance has 

the largest variability.      

TABLE 2: GDP Designs and SLE Metrics, EWR Case Study 

GDP design SLE metrics 

Planned  

capacity profile 

exemption  

ratio 

planned  

start time 

planned  

end time 

Planned  

GDP duration 

(hr) 

Capacity 

utilization 

efficiency predictability 

9 0.09 2:15 PM 8:52 PM 397 0.726 0.267 0.880 

11 0.12 12:44 PM 9:31 PM 527 0.716 0.434 0.891 

12 0.12 12:03 PM 11:46 PM 703 0.691 0.591 0.914 

3 0.10 12:39 PM 12:36 AM + 1 day 717 0.669 0.636 0.920 

7 0.10 12:42 PM 12:41 AM + 1 day 719 0.663 0.750 0.915 

14 0.11 12:21 PM 1:12 AM + 1 day 771 0.652 0.752 0.925 

1 0.11 12:03 PM 1:48 AM + 1 day 825 0.636 0.817 0.927 

5 0.11 12:03 PM 2:52 AM + 1 day 889 0.605 0.922 0.933 

4 0.11 12:03 PM 2:52 AM + 1 day 889 0.605 0.929 0.932 

2 0.09 12:35 PM 2:52 AM + 1 day 857 0.596 0.904 0.913 

13 0.09 12:35 PM 2:52 AM + 1 day 857 0.596 0.911 0.931 

6 0.11 12:03 PM 3:21 AM + 1 day 918 0.587 0.982 0.902 

10 0.10 12:21 PM 3:21 AM + 1 day 900 0.581 0.937 0.928 

8 0.13 11:16 AM 4:28 AM + 1 day 1032 0.552 0.992 0.869 

4.2 SFO Case Study Results 

The count and delay thresholds for identifying GDP start time are 11 flights and 11-minute delay. GDP 

issuance time is set as 6 am in the morning. In this case, we consider two sets of exemptions: set 1, flights 

are exempt if their departure times are within 45 minutes of the GDP issuance time or their departure 

airports are farther than 1000 miles away; set 2, flights are exempt if their departure times are within 45 

minutes or their departure airports are farther than 1600 miles away. SLE metrics are estimated for 

planned clearance times between 6 am and 5 pm every 30 minutes. Results are summarized in Table 3. 

Where the results under exemption set 2 are put in the parenthesis. We observe that the differences in 

GDP planned start and end times or values of SLE metrics for the same planned capacity profile with 

different exemption scopes are trivial. This observation was first found before by Liu and Hansen using 

an analytical GDP no-revision model (10). For the following discussion, we just look at the values with 

exemption scope as 1000 miles. 

A GDP is not called for the planned clearance time earlier than 10 am. Demand exceeds 30 per 

hour after 9 am, as shown in the top-right plot in Figure 3. If fog burns off and arrival capacity increases 

to 60 per hour before 10 am, the average delay per flight over 11 flights is less than 11 minutes and no 

GDP is needed.   

When a GDP is called, the planned start time is the same and the planned end time depends on the 

planned fog clearance time. At SFO, the marine cloud layer develops overnight and delay starts to 

develop when morning traffic hits the airport. As a result, the planned start time is the same since demand 

profile is the same.  

As we become more conservative in the clearance time, interestingly, capacity utilization 

expectation first increases then decreases. Compare scenario 2 to 1, clearance time is 30 minutes later but 
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the end time is 72 minutes later. The time ratio of high capacity duration to GDP duration for scenario 1 is 

about 0.24 (30/123) and it is about 0.37 (72/195) for scenario 2. Because of this, capacity utilization 

increases. The difference between clearance time and end time does not change much for different 

clearance times. However, the duration of low capacity level increases significantly with clearance time. 

As a result, capacity utilization decreases with clearance time for most of the cases. Similar to the EWR 

case, efficiency expectation increases when we become more conservative. Predictability expectation is 

larger for the scenarios with larger probabilities.     

TABLE 3: GDP Designs and SLE Metrics, SFO Case Study 

GDP design SLE metrics 

Planned  

capacity 

profile 

exemption  

ratio 

Planned 

clearance 

time 

planned  

start time 

planned  

end time 

Planned  

GDP duration 

(hr) 

Capacity 

utilization 

efficiency predictability 

 — 9:30 AM — — — — — — 

1 0.51 

(0.39)* 

10:00 AM 8:27 AM 

(8:48 AM) 

10:30 AM 

(10:28 AM) 

123 

(100) 

0.618 

(0.670) 

0.424 

(0.489) 

0.860 

(0.841) 

2 0.57 

(0.48) 

10:30 AM 8:27 AM 

(8:48 AM) 

11:42 AM 

(11:42 AM) 

195 

(174) 

0.657 

(0.690) 

0.634 

(0.673) 

0.878 

(0.868) 

3 0.54 

(0.46) 

11:00 AM 8:27 AM 

(8:48 AM) 

12:10 PM 

(12:08 PM) 

223 

(200) 

0.673 

(0.700) 

0.743 

(0.776) 

0.878 

(0.869) 

4 0.52 

(0.44) 

11:30 AM 8:27 AM 

(8:48 AM) 

1:19 PM 

(1:12 PM) 

292 

(264) 

0.634 

(0.659) 

0.825 

(0.861) 

0.882 

(0.869) 

5 0.52 

(0.45) 

12:00 PM 8:27 AM 

(8:48 AM) 

1:36 PM 

(1:34 PM) 

309 

(286) 

0.631 

(0.650) 

0.874 

(0.904) 

0.859 

(0.850) 

6 0.52 

(0.44) 

12:30 PM 8:27 AM 

(8:48 AM) 

1:58 PM 

(1:52 PM) 

331 

(304) 

0.626 

(0.645) 

0.905 

(0.930) 

0.833 

(0.822) 

7 0.51 

(0.43) 

1:00 PM 8:27 AM 

(8:48 AM) 

2:30 PM 

(2:24 PM) 

363 

(336) 

0.612 

(0.634) 

0.925 

(0.947) 

0.820 

(0.801) 

8 0.51 

(0.43) 

1:30 PM 8:27 AM 

(8:48 AM) 

2:57 PM 

(2:52 PM0 

390 

(364) 

0.600 

(0.613) 

0.936 

(0.955) 

0.794 

(0.781) 

9 0.49 

(0.41) 

2:00 PM 8:27 AM 

(8:48 AM) 

3:38 PM 

(3:32 PM) 

431 

(404) 

0.603 

(0.619) 

0.946 

(0.963) 

0.784 

(0.772) 

10 0.47 

(0.39) 

2:30 PM 8:27 AM 

(8:48 AM) 

3:59 PM 

(3:58 PM) 

452 

(430) 

0.606 

(0.614) 

0.954 

(0.969) 

0.761 

(0.748) 

11 0.47 

(0.39) 

3:00 PM 8:27 AM 

(8:48 AM) 

4:47 PM 

(4:45 PM) 

500 

(477) 

0.598 

(0.604) 

0.961 

(0.974) 

0.761 

(0.750) 

12 0.47 

(0.39) 

3:30 PM 8:27 AM 

(8:48 AM) 

5:08 PM 

(5:03 PM0 

521 

(495) 

0.589 

(0.598) 

0.964 

(0.976) 

0.741 

(0.729) 

13 0.47 

(0.38) 

4:00 PM 8:27 AM 

(8:48 AM) 

5:50 PM 

(5:41 PM) 

563 

(533) 

0.592 

(0.604) 

0.967 

(0.978) 

0.736 

(0.717) 

14 0.46 

(0.37) 

4:30 PM 8:27 AM 

(8:48 AM) 

6:10 PM 

(6:09 PM) 

583 

(561) 

0.592 

(0.595) 

0.969 

(0.980) 

0.718 

(0.706) 

15 0.46 

(0.38) 

5:00 PM 8:27 AM 

(8:48 AM) 

7:11 PM 

(7:09 PM) 

644 

(621) 

0.589 

(0.594) 

0.972 

(0.981) 

0.721 

(0.710) 

* The values in the parentheses and above are for exemption scope as 1600 miles and 1000 miles respectively.      

5. CONCLUSIONS 

In this paper, we propose a methodology to connect GDP designs to their service level expectation (SLE) 

metric vectors. This enables us to inform flight operators of the performances that they can expect from 

their selected GDP designs. The methodology consists of three steps: GDP start and end times 

identification, flight arrival time slot assignment and SLE metrics calculation.  

Moving average algorithm is used in finding GDP start and end times. When the average delay 

over 𝑛𝑡 flights exceeds 𝑑𝑡 minutes, where 𝑛𝑡 is the flight count threshold and 𝑑𝑡 is the delay threshold, 

then the GDP start time is defined as the scheduled arrival time of the first flight in the 𝑛𝑡 flights. An 

unconstrained optimization problem is formulated to identify these thresholds. GDP end time is identified 

using mirror logic with the same thresholds. 
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Two approaches are presented for assigning arrival time slot: a flexible approach and a fixed 

approach. The flexible approach is based on deterministic queueing model and more precise. The fixed 

approach is an approximation and more efficiency computationally. Exemption can be considered in both 

approaches.  

Three performance goals are currently considered for evaluating GDP performances: capacity 

utilization, efficiency and predictability. Their criteria and associated metrics are defined in section 3.1. 

For each GDP design, the possible realized performance is estimated when one of the possible capacity 

profiles is the actual one. Then, the SLE metrics—expectations of the performances—are calculated as 

the average over all the possible capacity profiles considering their possibilities.  

Finally, two case studies are performed to illustrate the idea of SLE based GDP design: one at 

EWR and one at SFO. It is observed that capacity utilization expectation usually decreases with a more 

conservative plan, which on the opposite benefits efficiency expectation. Predictability expectation is 

larger when the selected planned capacity profile is very likely or moderate. In the SFO case, we consider 

two different exemption scopes. It is found that impact of exemption scope on SLE metric vectors is 

trivial when GDP revision is not considered. 
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