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Background (1)

* FAA and EUROCONTROL published metrics to evaluate the
flight en route inefficiency, and FAA is seeking to understand
the causal factors behind the inefficiency.

* Observe rich variety of route choices that differ drastically with
respect to en route inefficiency.

* Models have been proposed to understand the features that
affect the choice of route for a flight, and further, the overall
contributions of different factors to flight en route
inefficiencies.

Reference:
Y. Liu, M. Hansen, D. Lovell, C. Chuang, M. Ball and J. Gulding, "Causal Analysis of En Route Flight Inefficiency--the US Experience," in 12th USA/Europe Air Traffic Management Research
and Development Seminar (ATM 2017), Seattle, WA, USA, 2017
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Background (Il)

* Interests towards individual flights have been widely recognized in

recent years.
* Trajectory prediction tools fit well into this domain.
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Applications (I)

e Traffic Management Initiatives (TMI) Planning
— Sector based operations.

— Deterministic flight trajectory predictions: historical flight tracks/ filed flight
plans.

— Drawbacks: unable to capture uncertainties.
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Image courtesy of: fly8ma.com and Alex Estes.
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Applications (Il)

e Trajectory Based Operations (TBO)

— Uses the 4D trajectories to both strategically manage and tactically
control surface and airborne operations.

— It is essentially asking, where the flight is going to be at the time of
Interest.

* Trajectory Prediction Tool
— Central to TBO analysis.
— Estimate sector demands and plan TMI.
— Performance analysis.

iK&L '



ITSBerkeley @ YEARS
Research Goal
* Develop aircraft trajectory o
prediction tools that can | == Actual Tracks

_ —— Flight Plans

— Incorporate uncertainties such as
adverse weather and wind.

— Predict flight tracks given initial
conditions.

— Provide prediction intervals.
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Highlights

e Generative Model
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— Inputs related to convective weather, winds, and temperature in the

vicinity of the aircraft, as well as the flight plan information.
— Outputs flight coordinates modeled as Gaussian Mixtures.

* Feature Engineering
— Efficient tree-based spatiotemporal matching algorithm.

— Batch mode matching during training.
— Recursive matching during inference.
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Data Sources

Flight Track Data

National Convective Weather Data
Wind Speed Data

Temperature Data
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Data Sources — TFMS

* Flight Track/ Plan Data

— Come from FAA Traffic Flow
Management System.

— Typically 60-second update.
— Latitude, longitude, altitude, time

— Derived the vertical and horizontal
speeds.
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Data Sources — NCWF

 National Convective Weather
Data (NCWF)
— 5-minute update nowcast.

— Convective weather polygons with
altitude (flight level) and speed.

NEXTOR I
NCWF convective weather polygon
= i M

P =y AT
||'| {?ﬁz\i)b = ;“l?’?
\ \ = , 5\_,

( L Ko ‘ I

\ i

\ §




ITSBerkeleyVEvms NEXTOF
Data Sources — NAM

 North American Mesoscale Data (NAM)
— Updated 4 cycles per day: 00:00; 06:00; 12:00; 18:00.

— Each cycle produced 5 datasets at O hour, 1 hour, 2 hour, 3 hour and 6
hour.

— Wind speed and temperature.
—0.1° x 0.1°
— 39 altitude levels: 50 mbar (~68000 ft) to 1000mbar (~0 ft).
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Data Sources — NAM

Wind Field Diagram (km/h) @ 200 mbar (~ 38,000 ft.); 02/04/2013 18:00 Zulu

39 isobaric pressure levels

For each level:

614 x 428
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Feature Engineering — Georeferencing

e Based on NAM weather data

* Red
— Original georeferencing grid
— 428 X 614

e Blue

— Cropped georeferencing grid
— Latitude: 22° ~52°

— Longitude: —130°~ — 64°
— ~ 336 X 413
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Feature Engineering — Discretize Weather Data

Original (2D projection)

Discretized (2D projection)
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Original data describe the boundary and
altitude of convective weather polygons

Discretized weather information will be stored as
binary variables in a matrix spanned by our
georeferencing grid. The red points on the graph

are the nonzero elements. v
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Feature Engineering — Feature Cube Path

e 2D grid

— For each track point, create a 20x20 grid
matrix with one side centered at the track
point, and oriented by the azimuth.

e Altitude buffer

— NAM: flight level = pressure altitude.
— NCWE: flight level + 200 FL

* Time buffer
— NAM: track time + 3 hours
— NCWEF: track time + 1 hour

Flight grid path is oriented by the azimuth.

’ ' it
— A . o
Fv;;, S

o

18



ITSBerkeley@vEAns
Feature Engineering — Matching

Batch Mode Tree-based 4D
Matching

— Temporal trees: query to find the
closest time instances to the flight
tracks.

— Spatial trees: query to find the
closest location instances to the
flight grid path.
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Methodology

* Training framework

— Encoder LSTM network: embed flight plan
sequence information.

— Decoder LSTM network: learn the
spatiotemporal correlation from flight
tracks.

— Convolutional layers: learn feature
representations from high-dimensional
meterological feature cubes.

* The predicted flight tracks are modeled
as Mixture of Gaussians whose
parameters are learned by the decoder
network.

Encoder

Loss
function
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Framework — Training

* |nputs
— X: Sequence of 2D coordinate (Lat, Lon) of flight @
plans.

— X: Sequence of state variables of flight tracks.
— X, =
(Lat, Lon, Alt, Time, Lat speed, Lon speed); =
(x,y,2,t,%,9)¢. 7 v |-
T A

— F:Sequence of matched feature cubes that
correspond to X. |

T~ I N
* Outputs W@ i e
— Y: Sequence of Gaussian mixture parameters SRR |
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Framework — Training

e EncodertSTM . iTTTITTr .
— X: Sequence of 2D coordinate (Lat, Lon) of flight plans.

— H: hidden layers of a two-layer LSTM with 128 neurons. i
— Flight plan information X is therefore embedded by encoder i
: X

~

LSTM into a fixed-length variable H.
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Framework — Training

EX

Loss
function

e Convolutional Layers

— Three convolutional layers and one dense layer.
— No pooling layers, and no padding operations.

— Dense layer has 32 neurons that act as the feature
representations from the high-dimensional
meteorological feature cubes (20x20x6=2400).

X
ST Input feature cubes Conv layer 1 Conv layer2 Convlayer3 Dense layer C
20x20x4 8x8x16 6x6x16 4x4x32 Dimension: 32
Filter size Filter size Filter size g
ense
6x6x16 N 3x3x16 3x3x32
Matched Stride 2 Stride 1 Stride 1
Feature
Cube F
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Framework — Training

e Decoder LSTM

— (: fixed-length feature vector learned by CNN (dense
layer) from high-dimensional weather data.

— Both X and C are fed into an embedding layer with 64
neurons before entering the decoder network.

Loss
function
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Framework — Inference/ Sampling

Trained
Trained Decoder

Encoder !

* |nputs
— Trained networks
— Sequence of flight plans
— Sequence of first t flight coordinates

o fx, X, * Outputs

G
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a|ns Conv.> Conv.> tlme t

Serare — Confidence interval of every predicted
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Framework — Inference/ Sampling
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Framework — Inference/ Sampling

| o] [ N
_ e~ [ £ S
& o S5 811
I £ © O
l Ol 12831
_ . N
e~
! | | 3 “
|
e J
_Ill-
|
—— :
LT
- =l S
a
B I s
| | N S
©
_ z s 12 £ E g
_ rm 5 £ hw_4gl 5
I (©) _Mrn__lpu__ O
i % _ i
vy o o L = =11
|\ AH AH _)4
“ < || N _
o
L oo o s s e o o o o s e | s o | o o | -
©
=== ========-= il e
: AN " g
_ w n \ I e
_ 0 ' 1o o 5 !
_ . \ = _.anwaL_:¥
I R . S S £ ol
S , S 'z 3 &
I ! IS & 5|
Ol
I I I S
I -==-l 8
I ()
I I o
: e
I ] =

Matched
Feature

Matched
Feature
Cube F,




ITSBerkeley @vms

Framework — Inference/ Sampling

Best k sampled sequences
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Numerical Experiments

* Training Set
— 1342 flights from IAH to BOS in 2013.

* Testing Set
— 337 flights from IAH to BOS in 2013.

* Preprocessing
— Downsample flight plans by identifying significant points.

— Downsample flight tracks by half (Avg. sequence length =
94).

— Normalize feature maps to 0 mean and unit variance.
* Training Specifics

— Nesterov Momentum SGD.

— Gradient clipping.

— 3 Gaussian mixtures.

— Dropout rate: 0.5
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= Feed tracks
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—— Flight Plans
Predicted tracks
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e Horizontal Error
— All: |Xi,pred - Xi,actl (nmi)

— Flight:
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e Vertical Error
— All: Z; preqa — Zigct (FL)

— Flight:
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Summaries

* Propose an end-to-end deep neural network framework to
predict actual flight trajectories.

* Convolutional layers are deployed to extract feature
representations from high-dimensional weather features.

 The model is generative and can predict/ generate flight track
distributions given initial conditions and weather information.

* Adaptive Kalman Filter, beam search, and RTS smoother are
implemented to prune the prediction intervals.
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