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Abstract — In this work, we propose a novel approach to predict 
aircraft trajectory choice. A trajectory clustering technique is 
used to consolidate historical flight tracks into a small set, and the 
cluster assignment results are then used as the ground truth of the 
route choice. Three types of features are used to predict the 
trajectory choice:  convective weather, wind, and Miles-In-Trail 
(MIT) restrictions. Dimension of the features is greatly reduced by 
matching them with the representative trajectories of different 
clusters, which we call Nominal Routes. Four popular machine 
learning models are explored and compared: logistic regression, 
support vector machine, random forest, and gradient boosting. 
We apply our methods to five airport pairs: IAH to BOS, BOS to 
IAH, FLL to JFK, JFK to FLL, and LAX to SEA. The random 
forest approach has the best performance for all pairs except IAH 
to BOS, where gradient boosting has slightly better performance. 
Based on the best models, we rank the importance of features for 
different airport pairs. Results vary, but in general, wind has the 
largest effect, followed by thunderstorm, rain, and MIT. 

Keywords – Aircraft Trajectory Prediction; Trajectory 
Clustering; Miles-In-Trail; Convective Weather; Random Forest; 
Gradient Boosting; Support Vector Machine; Logistic Regression 

I.  INTRODUCTION  
With the emerging demand for air traffic, it is crucial to monitor 
and control air traffic flow to ensure the safety and efficiency of 
the National Airspace System (NAS). The Federal Aviation 
Administration (FAA) developed the Traffic Flow Management 
System (TFMS) to estimate sector traffic loads, make planning 
decisions, and evaluate historical performance. In the Europe, 
EUROCONTROL adopted the PREDICT system ( [1]) to 
forecast the pre-tactical traffic load. While the vast majority of 
the decision-making processes (e.g., Miles-In-Trail restrictions) 
relies on traffic load estimation, the estimated demand is 
calculated mostly based on deterministic flight trajectory 
prediction processes, using, for example, filed flight plans or 
historical routes ( [2], [3]). However, demand forecasting based 
upon deterministic processes barely considers uncertainties such 
as unsteady weather conditions, which could lead to 
overestimating the traffic load for sectors with bad weather and 

induce unnecessary Traffic Management Initiatives (TMIs). 
Additionally, from a system point of view, sector demand is not 
only the result of planned flight routes, but also reroutes in 
response to TMIs and weather changes. Therefore, this paper 
aims to provide a trajectory prediction tool that can incorporate 
different sources of uncertainties – weather, wind, TMIs, etc., 
and further understand how those uncertainties affect the 
prediction results. 

Current literature on aircraft trajectory prediction tools 
focuses mostly on predicting individual flight trajectories. Both 
deterministic and probabilistic approaches have been employed. 
The former approach (e.g., [4], [5], [6]) usually applies specific 
aerodynamic models and optimal control theory to estimate the 
state of an aircraft and then propagate the estimated states into 
the future. Although it accounts for specific aircraft parameters 
and kinematic equations, this approach, without considering any 
uncertainties such as unsteady weather conditions, can either 
predict only a specific phase of a flight or suffer from degraded 
prediction accuracy. Moreover, this approach cannot be used to 
predict trajectories prior to flight initiation. In contrast, the 
probabilistic approach relies on statistical tools to “learn” how 
aircraft fly from point A to point B from historical trajectory 
datasets. Ref. [7] trains a Generalized Linear Model (GLM) to 
use wind and aircraft initial state to predict the trajectories 
within the arrival terminal area. However, instead of predicting 
a 4D trajectory, the authors predict the time of arrival to each of 
a set of given fixed significant points (a.k.a., waypoints). Ref. 
[8] proposes a Hidden Markov Model (HMM) to predict full 4D 
trajectories, given the observed weather conditions (temperature 
and wind). In their model, the position of the aircraft is defined 
as the hidden state, and they assume that the weather cube 
observed around the track point is a realization of such hidden 
state. By training the HMM on a historical trajectory and 
weather dataset, the authors obtain the transition matrix and thus 
use it to predict any flight trajectories based on the observed or 
inferred weather sequence. Both models take the uncertainties 
of weather into account, but do not use any information about 
TMIs. More importantly, they only consider the local effect of 
weather, while in practice, flight routing accounts for a much 
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larger region of weather conditions. Therefore, the prediction 
error is typically large. 

This paper proposes an approach that, instead of directly 
predicting individual flight tracks, predicts the aircraft route 
choices by consolidating a large number of trajectories into 
several clusters within which flight tracks are similar to each 
other. These predictions can support individual flight trajectory 
prediction tools by predicting the cluster to which a future flight 
trajectory will belong. Moreover, by identifying the relative 
importance of disparate factors in determining cluster 
assignment, it enhances our understanding of existing air traffic 
patterns and ability to understand how these factors affect en 
route efficiency. Marcos et al. ( [9]) propose a similar 
framework that also applies trajectory clustering algorithm to 
predict aircraft route choice. However, their model utilizes a 
small set of features based on visual exploration, and does not 
incorporate uncertain factors such as convective weather and 
wind. As we will discuss further in section II, our approach is 
capable of efficiently utilizing a rich variety of features to 
predict route choices. Finally, our method establishes a baseline 
for predictive performance that may be improved upon in 
subsequent studies. 

The rest of the paper is organized as follows. In section II, 
we summarize our data sources and feature engineering, which 
introduces the concept of choice set construction and nominal 
route. Section III describes the predictive models and model 
selection rules. In Section IV, we visualize the route choice sets 
for different airport pairs and present the prediction results. 
Section V offers conclusions, as well as suggestions for further 
research. 

II. DATA AND FEATURE ENGINEERING 
In this section, we first summarize the datasets used in the 
research, and then introduce how we construct the choice set, 
which induces the concept of a nominal route. Finally, we 
describe the process of extracting features for route choice 
prediction. 

A. Data Sources 
In this study, we use four datasets from different sources. The 
flight tracks dataset, which comes from the FAA Traffic Flow 
Management System (TFMS), contains 4D position – latitude, 
longitude, altitude, and time, whose resolutions are respectively 
1 minute, 1 minute, 100 feet and 1 minute – of each aircraft 
throughout its flight. For this study, we obtained flight tracks for 
the 5 airport pairs listed in TABLE I. for the calendar years 
2013, 2014, and 2015. During the preprocessing, we excluded 
tracks where spatial or temporal discontinuities were detected 
and ones that started or ended outside of the selected terminal 
areas. 

The convective weather dataset was obtained from the 
National Oceanic and Atmospheric Administration (NOAA), 
and includes hourly summaries for convective weather 

conditions like thunderstorm, rain, hail, etc. at approximately 
2,500 ground stations in the US. Each record is a vector of 
binary variables indicating if there was a certain type of weather 
occurring at a specific time and location. For thunderstorms, it 
also indicates three levels of strength – light, medium and heavy. 
The collected data represented the years 2013 to 2015. 

TABLE I.  SUMMARY STATISTICS FOR FIVE AIRPORT PAIRS 

Airport Pair Number of tracks after preprocessing 
2013 2014 2015 

IAH → BOS 1679 1710 1673 
BOS → IAH 1742 1782 1698 
FLL → JFK 4010 3847 4515 
JFK → FLL 4042 3705 4567 
LAX → SEA 6991 8066 8964 
 

The wind dataset used in this work comes from the National 
Center for Atmospheric Research (NCAR). It records the 
southerly and westerly wind speeds four times a day – 0:00, 
6:00, 12:00, and 18:00 UTC. For each instance, the wind speed 
is given at a 3D grid with 2.5° × 2.5 °  latitude/ longitude 
resolution, and 17 pressure levels ranging from 10 mbar to 1000 
mbar ( [10], [11]). By collecting the wind data from CY 2013 to 
2015, we obtained 4,380 raster files. 

The Miles-In-Trail (MIT) dataset comes from the National 
Traffic Management Log (NTML), and contains information 
about where, when, and why MIT restrictions were 
implemented. In the US, the MIT specifies the spacing required 
between aircraft flying along a certain path at an altitude range 
[12].  Fields of interest include providing/ requesting facility, 
NAS element, start/end time, altitude, and the actual MIT 
spacing parameter. For this study, we excluded restrictions that 
were cancelled before initiation and those whose distance 
thresholds were less than 0, and we also merged MITs that were 
extended or modified from the initial MIT. Lastly, we only 
included restrictions with known facility and NAS element 
geometries. TABLE II. provides a few summary statistics about 
MIT restrictions from CY 2013 to 2015. 

TABLE II.  SUMMARY STATISTICS FOR MIT FROM 2013 TO 2015 
 TOTAL ENROUTE 

Cancelled Before Initiation Rate 5.48% 5.24% 
Number Initiated 543,643 231,298 
Total Number of MIT after preprocessing 465,966 203,457 
Average Duration/ hours 2.04 1.82 
Average MIT Value/ miles 18.79 20.59 

 

B. Contructing the Route Choice Set 
To fulfill the goal of modeling the aircraft trajectory choice, we 
first need to construct the route choice set for a given Origin - 
Destination (OD) pair. One approach would be to treat every 
historical route as one of the alternatives. However, this is 
computationally intractable due to the volume of the traffic and 
challenges of computing the features for each member of such a 
large choice set. Moreover, it is difficult to validate such a 
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model. We therefore opt for a simpler approach. We reduce the 
choice set by grouping similar flight trajectories and use the 
cluster assignment of a given flight as the route choice, or label. 
To implement this idea, we must apply a trajectory clustering 
algorithm to classify flight tracks. A brief summary of the 
algorithm is shown in Algorithm 1. Interested readers may refer 
to [13] for the details of the algorithms. 

Algorithm 1. Trajectory Clustering (TC) 
INPUT 
Flight track dataset 𝐹𝐹𝐹𝐹. 
PARAMETER 
Maximal distance threshold 𝑒𝑒𝑒𝑒𝑒𝑒 in DBSCAN algorithm 
Minimal samples threshold 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 in DBSCAN algorithm 
OUTPUT 
Number of Clusters, cluster assignment, and nominal routes 
Step 1 For every flight, linearly interpolate 100 points with equal distance 
along the route traveled. 
Step 2 Apply Principal Component Analysis (PCA) on all the interpolated 
trajectory data, and get the first five components as the feature vector. 
Step 3 Apply DBSCAN(𝑒𝑒𝑒𝑒𝑒𝑒,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) algorithm [14] to cluster similar 
trajectories. 
Step 4a For each cluster, solve a 1-median problem to get the nominal route. 

a. The use case for step 4 is described in section II.C. 

C. Framework of Feature Engineering 
From section II.B, we have constructed a set clusters, and know 
the cluster assignment for any given flight in our data set. To 
predict the route choice, four types of predictors are used: the 
presence of weather conditions at the 2,500 US ground stations, 
wind information, MIT restrictions, and flight features such as 
operating airline and departure season. The description of 
variables is summarized in TABLE III.  

Before we build the predictive models, it is crucial for us to 
convert the underlying data into features that provide the basis 
for the subsequent modelling. One naïve alternative would be 
for each flight, to use the full dataset of predictors covered by 
the flight time period. However, this runs the danger of 
overfitting. For example, a normal flight from IAH to BOS takes 
around three hours of airborne time. Within the time period, the 
dimensions for the convective weather alone would be 
approximately 2482 × 3 × 7 ≈ 50,000 , where 2,482 is the 
number of weather stations, 3 the time instances (a 3-hour flight 
matches roughly 3-hour weather instances), and 7 the number of 
weather phenomena. However, the total number of flights from 
IAH to BOS is 5062, which is much fewer than the dimensions 
of the naïve features. Therefore, we need to construct highly 
descriptive features that not only represent the conditions in the 
relevant airspace, but with controllable dimensions. 

To tackle the dimensionality issue, we introduce the concept 
of Nominal Route. Among the trajectories that form a given 
cluster, one can identify a specific trajectory that is the “center” 
of the cluster (see step 4 in Algorithm 1), which we call the 
nominal route. Such routes are highly representative for the 
associated clusters so that we can use them as the bases for 
determining cluster features (e.g., exposure to thunderstorms) 
that help predict to which cluster a given flight belongs. 

Moreover, we assume cluster assignments of individual flights 
depend on nominal route-specific features, such as convective 
weather and wind. To determine these features for a specific 
flight, we fix its departure time at its actual value, which we 
assume would be the same regardless of its flight route. Based 
on these two assumptions, we determine the features for each 
designated flight by concatenating route-specific features for all 
nominal routes. The general framework of the feature 
engineering is described by Algorithm 2. 

Algorithm 2. General Framework for Feature Engineering (FE) 
INPUT 
Trajectory of a designated flight 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡. 
Trajectories of a set of nominal routes 𝑁𝑁𝑁𝑁 = {𝑁𝑁𝑅𝑅1,𝑁𝑁𝑅𝑅2, … }, where 𝑁𝑁𝑅𝑅𝑖𝑖 =
{𝑝𝑝1,𝑝𝑝2, … }  and 𝑝𝑝𝑖𝑖  is a 4-dimensional point consitituded of latitute, 
longitude, altitude and time. 
OUTPUT 
Mapped features of the set of nominal routes with replaced time stamps 
Step 1 Get the departure time 𝐷𝐷𝐷𝐷 and flight specific features 𝐹𝐹𝐹𝐹𝐹𝐹 – airline 
and departure season – from 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡. 
Step 2 For each nominal route 𝑁𝑁𝑅𝑅𝑖𝑖, (a) replace its departure time with 𝐷𝐷𝐷𝐷; 
(b) calculate the subsequent time stamps based on the new departure time 
𝐷𝐷𝐷𝐷 and 𝑁𝑁𝑅𝑅𝑖𝑖. 
Step 3 Call Algorithm 3, Algorithm 4 and Algorithm 5 to construct route 
specific features for each nominal route. 

 

D. Constructing Features for Nominal Routes 
There are three types of route specific features – convective 
weather, wind and MIT, each of which has different data format 
and construction rules. The convective weather records obtained 
from NOAA are recorded at individual weather stations, and are 
represented as time-stamped vectors of the form 
�𝐼𝐼t, 𝐼𝐼r, 𝐼𝐼s, 𝐼𝐼ℎ , 𝐼𝐼𝑖𝑖 , 𝐼𝐼𝑝𝑝 , 𝐼𝐼𝑠𝑠ℎ�, where the binary indicator variables �𝐼𝐼𝑗𝑗� 
represent the presence or absence of thunderstorms, rain, 
squalls, hail, ice, precipitation, and showers, respectively. 
Moreover, in the original dataset, thunderstorm is marked as 
𝑇𝑇𝑇𝑇−,𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇 + , which stands for light, medium and heavy 
thunderstorms, respectively. Therefore, we also use a variable 
𝐼𝐼𝑡𝑡𝑠𝑠 = [0.5, 1, 1.5] to specify the strength of the thunderstorm (a 
smaller value is for lighter conditions). For a given flight and a 
set of given nominal routes, we first use steps 1 and 2 of 
Algorithm 2, and then compute the weather-related metrics 
using Algorithm 3. At a high level, the algorithms compute a 
weighted average of each binary weather variable at each station 
within 150 nautical miles of a given point on the route based on 
the weather at the nearest time stamp to when the flight would 
have traversed that point, where the weight is the inverse of the 
distance between the station and the point. 

The wind data from NCAR are stored as raster files. Each 
raster file corresponds to a single snapshot of wind vectors 
𝑊𝑊𝑊𝑊 = [𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖] at a specific time, where 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖  and 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖  are, 
respectively, the westerly and southerly wind speed components 
at the grid point (𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎) = (𝑖𝑖, 𝑗𝑗, 𝑘𝑘). Similar to Algorithm 
3, we construct the wind features for transformed nominal routes 
using a tree-based search technique. To summarize, this 
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algorithm matches each track point on the route with both 
spatially and temporally closest wind speed, and uses it to 
calculate the equivalent still air distance and average wind speed 
for each nominal route. The details are described in Algorithm 
4. 

Algorithm 3. Mapping Convective Weather (MCWX) 
INPUT 
Trajectory of a nominal route with replaced time stamps 𝑁𝑁𝑁𝑁′ = {𝑝𝑝1′ ,𝑝𝑝2′ , … }. 
Note that only the time dimension of 𝑁𝑁𝑁𝑁′ is different from 𝑁𝑁𝑁𝑁. 
A tensor of convective weather data 𝑊𝑊𝑊𝑊 = [𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡] , where 𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡 
represents the binary indicator for weather phonomenon 𝑘𝑘 c of station 𝑗𝑗 a at 
time 𝑡𝑡. 
PARAMETER 
Maximum query distance 𝑀𝑀𝑀𝑀𝑀𝑀_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (default: 150 nautical miles) 
OUTPUT 
Weather-related features for 𝑁𝑁𝑁𝑁′. 
Step 1 Construct two kd-trees [15] for spatial (𝑠𝑠_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑤𝑤𝑤𝑤) and temporal b 
(𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑤𝑤𝑤𝑤) dimensions, repectively. The spatial tree is built based on the 
location of the weather stations. 
Step 2 Query 𝑠𝑠_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑤𝑤𝑤𝑤 to find all stations within a circle with radius of 
𝑀𝑀𝑀𝑀𝑀𝑀_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 for each track point 𝑝𝑝𝑖𝑖′ of 𝑁𝑁𝑁𝑁′. 
Step 3 Query 𝑡𝑡_𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟_𝑤𝑤𝑤𝑤 to find the nearest time stamp in the weather data 
to 𝑁𝑁𝑁𝑁′. 
Step 4 Combine query results from steps 2 and 3, and get a list of matched 
weather variables 𝑀𝑀𝐼𝐼𝑖𝑖𝑖𝑖 , where 𝑘𝑘 represents the weather phenomenon, and a 
list of distances away from matched weather stations (𝑀𝑀𝑀𝑀𝐷𝐷𝑖𝑖) to each track 
point 𝑝𝑝𝑖𝑖′. 
Step 5 Compute the weighted average 𝑀𝑀𝐼𝐼𝑖𝑖𝑖𝑖 and get weather scalar 𝑀𝑀𝑊𝑊𝑖𝑖𝑖𝑖 
for track point 𝑝𝑝𝑖𝑖′, where the weights are a decreasing function 𝑀𝑀𝑀𝑀𝐷𝐷𝑖𝑖 and 
sum to 1. (Currently the function is 1/ 𝑀𝑀𝑀𝑀𝐷𝐷𝑖𝑖) 
Step 6 Average 𝑀𝑀𝑊𝑊𝑖𝑖𝑖𝑖  along the nominal route 𝑁𝑁𝑁𝑁′ and get the feature 
metric 𝑊𝑊𝑊𝑊𝑘𝑘 for weather phonomenon 𝑘𝑘. 
Step 7 Return 𝑊𝑊𝑊𝑊 , where 𝑊𝑊𝑊𝑊  is a list of 𝑊𝑊𝑊𝑊𝑘𝑘  and 𝑊𝑊𝑊𝑊𝑘𝑘  is the weather 
metric for weather activity 𝑘𝑘. 

a. A station is represented by (latitude, longitude). 

b. For the purpose of computational efficiency, we set a base time and use the difference between the 
base time and time stamps in both the weather and trajectory data to construct and query the kd-trees. 
This also applies to the subsequent algorithms. 

c. 𝑘𝑘 includes thunderstorm, thunderstorm level, rain, squall, hail, ice, precipitation and shower. 

 

The miles-in-trail data from NTML are recorded as 𝑀𝑀𝑀𝑀𝑀𝑀 =
{𝑠𝑠𝑠𝑠, 𝑒𝑒𝑒𝑒, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑝𝑝𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛𝑛𝑛𝑛𝑛_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣} . It can 
be interpreted as facility 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (e.g., ZLA) requests a MIT to 
manage the area’s traffic, so that facility 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (e.g., ZOA) 
provides a MIT restriction enforced at the NAS element (e.g., 
BTY) with value 𝑚𝑚𝑚𝑚𝑚𝑚_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (e.g., 15 miles) and altitude range 
specified by 𝑎𝑎𝑎𝑎𝑎𝑎  from time 𝑠𝑠𝑠𝑠  to time 𝑒𝑒𝑒𝑒 . Note that the NAS 
element can be a jet route, TRACON or fix; therefore, each MIT 
restriction considered must be assigned to an influence area. In 
this study, we must assess the airspace regions within which 
flight traffic is impacted by:  

1) If the NAS element is a fix, then the influence area we 
use is a circle of radius 𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓  around the fix. A trajectory is 
considered to be potentially influenced by this MIT if it 
intersects this circle. 

2) If the NAS element is a jet route, then we define a swath 
centered on the jet route with overall width 𝐷𝐷𝑗𝑗𝑗𝑗𝑗𝑗. A trajectory is 

considered to be potentially influenced by this MIT if it 
intersects this swath for at least a “distance” 𝐿𝐿𝑗𝑗𝑗𝑗𝑗𝑗 . 

3) If the NAS element is a center/TRACON, we use its 
existing geometry. A trajectory is considered to be potentially 
influenced by this MIT if it intersects this polygon. 

 
Algorithm. 4 Mapping Wind (MWD) 
INPUT 
Trajectory of a nominal route with replaced time stamps 𝑁𝑁𝑁𝑁′ = {𝑝𝑝1′ ,𝑝𝑝2′ , … }. 
Note that only the time dimension of 𝑁𝑁𝑁𝑁′ is different from 𝑁𝑁𝑁𝑁. 
A tensor of wind data 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = [𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖] , where 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  and 𝑉𝑉𝑖𝑖𝑗𝑗𝑘𝑘𝑘𝑘 
respectively represent the westerly and southerly wind speeds at the grid 
(𝑖𝑖, 𝑗𝑗, 𝑘𝑘)a and time 𝑡𝑡. 
OUTPUT 
Wind-related features for 𝑁𝑁𝑁𝑁′. 
Step 1 Construct two kd-trees for spatial (𝑠𝑠_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) and temporal b 
(𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) dimensions, repectively. The spatial tree is built based on 
the horizontal grids. 
Step 2 Find the closest altitude level from the 17 standard pressure altitudes 
in the wind data to each track point 𝑝𝑝𝑖𝑖′ of 𝑁𝑁𝑅𝑅′. 
Step 3 Query 𝑠𝑠_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 to find the 2D grid point nearest to each track 
point 𝑝𝑝𝑖𝑖′ of 𝑁𝑁𝑁𝑁′. 
Step 4 Query 𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 to find the time stamp of the wind data nearest 
to 𝑁𝑁𝑁𝑁′. 
Step 5 Combine query results from steps 2, 3 and 4, and get the matched 
westerly and southerly wind speeds (𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖) for each track point 𝑝𝑝𝑖𝑖′. 
Step 6 For each track point 𝑝𝑝𝑖𝑖′, calculate the azimuth 𝜃𝜃 with respect to the 
previous adjacent point, then calculate the headwind/tailwind by 𝐻𝐻𝐻𝐻𝑊𝑊𝑖𝑖 =
𝑢𝑢𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  c. Calculate the average of 𝐻𝐻𝐻𝐻𝑊𝑊𝑖𝑖  along the trajectory 
(mean wind speed 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀). 
Step 7 Use the ground speed in the flight track data and headwind/tailwind 
speed to calculate the airspeed, then calculate the distance traveled for 𝑁𝑁𝑅𝑅′ 
with respect to the air (equivalent still air distance 𝑊𝑊𝑊𝑊). 
Step 8 Return 𝑊𝑊𝑊𝑊 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. 

a. A grid is represented by (latitude, longitude, pressure altitude). 

b. The temporal tree is constructed in the same way as in Algorithm 3. 

c. If the 𝐻𝐻𝐻𝐻𝐻𝐻 is negative, then it represents headwind speed. 

 

4) If the altitude of a MIT is specified, then we define an 
altitude buffer 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎. A trajectory is considered to be potentially 
influenced by this MIT if its crossing altitude is within the 
altitude range of 𝑎𝑎𝑎𝑎𝑎𝑎 ± 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 . 

The detailed feature construction algorithm is described in 
Algorithm 5. Different from Algorithms 3 and 4, this algorithm 
intersects each route with all MIT geometries and finds the 
one(s) that are both spatially and temporally matched. The 
relevant features of the MIT include the number of matched MIT 
restrictions, average of matched MIT durations, values, and 
stringency. 

Algorithm 5. Mapping MIT (MMIT) 
INPUT 
Trajectory of a nominal route with replaced time stamps 𝑁𝑁𝑁𝑁′ = {𝑝𝑝1′ ,𝑝𝑝2′ , … }. 
Note that only the time dimension of 𝑁𝑁𝑁𝑁′ is different from 𝑁𝑁𝑁𝑁. 
A matrix of MIT dataset 𝑀𝑀𝑀𝑀𝑀𝑀 = {𝑠𝑠𝑠𝑠, 𝑒𝑒𝑒𝑒, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑛𝑛𝑛𝑛𝑛𝑛_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑎𝑎𝑎𝑎𝑎𝑎, 
𝑚𝑚𝑚𝑚𝑚𝑚_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣} where each column is a 1-dimensional vector. 
PARAMETER 
Radius of a circle around a fix: 𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓  (default: 0.25-degree of latitude/ 
longitude. See Ref. [16] for further information) 
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Algorithm 5. Mapping MIT (MMIT) 
Width of a swath surrounding a jet route: 𝐷𝐷𝑗𝑗𝑗𝑗𝑗𝑗  (default: 0.5-degree of 
latitude/ longitude) 
Minimal length of within a intersected swath: 𝐿𝐿𝑗𝑗𝑗𝑗𝑗𝑗  (default: 1-degree of 
latitude/ longitude) 
Altitude buffer: 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 (default: 1000 ft.) 
OUTPUT 
MIT-related metric for 𝑁𝑁𝑁𝑁′. 
Step 1 Convert 𝑁𝑁𝑅𝑅′ to a “LineString” geometry object. Convert the 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 to polygon geometry objects. Define influencing area based 
on 𝑛𝑛𝑛𝑛𝑛𝑛_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  and parameter 𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓,𝐷𝐷𝑗𝑗𝑗𝑗𝑗𝑗  and  𝐿𝐿𝑗𝑗𝑗𝑗𝑗𝑗 , and convert them into 
corresponding geometry object. 
Step 2 Filter MITs whose 𝑒𝑒𝑒𝑒 is before the departure time of 𝑁𝑁𝑅𝑅′ and whose 
𝑠𝑠𝑠𝑠  is after the arrival time of 𝑁𝑁𝑅𝑅′ . The remaining MIT restrictions are 
retained as a candidate. 
Step 3 Intersect 𝑁𝑁𝑅𝑅′  with every candidate MIT. If 𝑁𝑁𝑅𝑅′  intersects the 
𝑀𝑀𝑀𝑀𝑇𝑇𝑖𝑖’s influencing area, 𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑎𝑎𝑐𝑐𝑖𝑖 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖 in a correct order, and the 
time of intersecting with influencing area is within [𝑠𝑠𝑡𝑡𝑖𝑖 , 𝑒𝑒𝑡𝑡𝑖𝑖], then 𝑀𝑀𝑀𝑀𝑇𝑇𝑖𝑖 will 
go to Step 4, otherwise it will be discarded. 
Step 4 For the remaining MITs, if the altitude restrictions with buffer 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 
are satisfied at the intersection point with the influencing area, then we 
gather the list of such MITs as 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 and pass it to step 5. 
Step 5 Count the number of matched MITs in 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  as 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , and 
Calculate average of the MIT value, MIT duration, MIT stringencies a in 
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 as 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑣𝑣𝑣𝑣𝑣𝑣, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑠𝑠𝑠𝑠𝑠𝑠. 
Step 6 Return  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑣𝑣𝑣𝑣𝑣𝑣, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑠𝑠𝑠𝑠𝑠𝑠. 

a. The MIT stringency is defined as the product of MIT hour and MIT value. 

 

Through Algorithm 2 to Algorithm 5, the feature space for each 
flight includes a vector of features for different nominal routes 
as in the format of 𝐹𝐹 = [𝐹𝐹0,𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑁𝑁] , where 𝐹𝐹𝑖𝑖  is the 
feature vector (e.g., [𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑊𝑊𝑊𝑊, … ]) for nominal route 𝑖𝑖 with 
transformed time stamps. The description of the full feature 
vector for any flight is summarized in TABLE III.  

TABLE III.  DESCRIPTION OF FEATURES 

Category Notation  Description 

Flight 
level 

generic 
variable 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
A list of dummy variables. Each category is a 
major airline that covers at least 1% of the 
total traffic. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 Binary variable. Equals 1 if the departure 
time is before 12 pm local time 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

A list of dummy variables. Categorized by 
the depature month: winter (Dec - Feb), 
spring (Mar - May), summer (Jun - Aug), fall 
(Sep - Nov) 

Convective 
weather 

𝑇𝑇𝑇𝑇 Average of the thunderstorm 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 Average of the thunderstorm level 

𝑅𝑅 Average of the rain 
𝑆𝑆 Average of the shower 
𝐻𝐻 Average of the hail 
𝐼𝐼 Average of the ice 
𝑃𝑃 Average of the precipitation 
𝑆𝑆𝑆𝑆 Average of the shower 

Wind  𝑊𝑊𝑊𝑊 Wind distance 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Average of wind speed 

MIT 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 Number of MIT matched 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑣𝑣𝑎𝑎𝑙𝑙 Average of MIT value 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑑𝑑𝑑𝑑𝑑𝑑 Average of MIT duration 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑠𝑠𝑠𝑠𝑠𝑠 Average of MIT stringency 

 

III. PREDICTIVE MODELS AND MODEL SELECTION 

A. Candidate Models 
To model the aircraft route choice, we compare the performance 
of four machine learning algorithms: Logistic Regression (LR), 
Support Vector Machine (SVM), and two tree-based ensemble 
methods – Random Forest (RF) and Gradient Boosting (GB).  

Logistic regression assumes that the Logit transformation of 
the probability of each choice has a linear relationship with the 
predictors. By maximizing the likelihood of the outcome in the 
training dataset, LR learns the probabilistic assignment of each 
alternative given the feature vector. SVM tries to find, instead 
of the probabilistic distribution of the data, the separating 
hyperplane that maximizes the margins of different classes [17]. 
In this study, we also apply a Gaussian Radial Basis Function 
(RBF) kernel in the SVM algorithm to further capture 
nonlinearities. Random forest and gradient boosting are both 
based on decision trees, which map the feature vector to the 
target choice in the leaves of the tree by splitting the data 
recursively [18]. While decision trees are inherently indifferent 
to nonlinear features and have low bias, the variance is prone to 
be high. Therefore, to overcome the issue of high variance, 
random forest and gradient boosting algorithms are proposed. 
While the RF learns a cluster of fully grown decision trees 
(usually shallow and using only a random subset of the features) 
and use the average of the output for all trees, GB starts with a 
weak decision tree (e.g., shallow trees) and sequentially learns a 
set of trees that reduce the error (bias) of the previous trees [19], 
[20], [21]. 

B. Model Selections and Experimental Setup 
As addressed in the previous section, the conflict between bias 
and variance makes it crucial to properly tune the hyper 
parameters for the prediction models. While all four algorithms 
have an extensive number of hyper parameters to tune, we select 
the ones that are commonly used in the open literature. The 
notations and parameter grids are summarized in TABLE IV.  

Selecting hyper parameters for different models involves 
deciding appropriate model performance metrics. Although 
prediction accuracy is an important metric in this study, our data 
in general are heavily imbalanced so that using accuracy alone 
is no longer reliable. For example, for the pair LAX  SEA, 
one of the classes has over 75% of samples, therefore, a naïve 
model that always predicts this class will yield over 75% 
accuracy. Thus, in this study, we use the unweighted average F1 
score, which is the average of F1 scores across all classes 
without considering the class weights, as the performance metric 
to select the best hyperparameters and the best model. The F1 
score is twice the harmonic mean of the precision—the ratio of 
true positives to predicted positives—and the recall—the ratio 
of true positives to actual positives. To be more specific, for each 
city pair, we first randomly split the full dataset into a training 
set (80%) and testing set (20%). Second, for each candidate 
model, we use a 3-fold cross-validation over the training set to 
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perform exhaustive search over the parameter grid to select the 
best parameter(s). To estimate the 3-fold cross-validation 
average F1 score, we randomly partition the training set into 
three subsets, and repeatedly use two sets for training and one 
set for calculating average F1 score three times. The final F1 
score is the average of three F1 scores over different subsets. 
Lastly, we use the selected hyperparameters to train all four 
models on the full training set, and evaluate them on the testing 
set. The model with the highest average F1 score was selected 
for further analysis. 

TABLE IV.   HYPER PARAMETERS FOR PREDICTIVE MODELS 

Model Notation  Description Parameter grid 

Logistic 
Regression 𝐶𝐶 

Penalty term for 
the 𝑙𝑙2 
regularization 

𝐶𝐶
= [0.1, 1, 10, 25, 100, 150] 

SVM 
𝛾𝛾 

Kernal 
coefficient for 
RBF 

𝛾𝛾 = [0.01, 0.1, 1, 10] 

𝐶𝐶 Penalty term for 
error term 𝐶𝐶 = [1, 10, 100, 150] 

Random 
Forest 

𝐷𝐷 Maximal depth 
of the trees 𝐷𝐷 = [7, 9,11, 15, 19, 27] 

𝑁𝑁 Number of trees 𝑁𝑁 = 300 

Gradient 
Boosting 

𝐷𝐷 Maximal depth 
of the trees 𝐷𝐷 = [7, 11, 15, 19, 27] 

𝐿𝐿𝐿𝐿 Learning rate 𝐿𝐿𝐿𝐿 = [0.05, 0.1, 1] 

𝑆𝑆 

Sampling rate of 
the training data 
to learn each 
tree 

𝑆𝑆 = [0.25, 0.75, 1] 

𝑁𝑁 Number of trees 𝑁𝑁 = 300 

IV. RESULTS 
In this section, we first present the results of trajectory clustering 
(route choice set) for the specified five OD pairs. Then we 
briefly summarize the performance metrics for different models 
with the best hyperparameters. Lastly, we use the selected model 
to estimate the importance of different features. 

TABLE V.  CLUSTERING STATISTICS 

Cluster 
Color index 

OD pair 
IAH 
BOS 

BOS 
IAH 

FLL 
JFK 

JFK 
FLL 

LAX 
SEA 

Red 34.12% 60.37% 83.30% 79.97% 13.75% 
Green 22.55% 5.46% 14.20% 11.49% 75.51% 
Magenta 35.76% 19.18% 0.82% 3.03% 2.39% 
Cyan 0.55% 2.64% - 1.00% - 
Blue 0.53% 1.26% - 0.23% - 
Black 6.46% 11.06% 1.67% 4.28% 8.35% 

A. Trajectory Clustering Results 
Figure 1.  show the clustering results for the OD pairs listed in 
TABLE I.  Each color represents a cluster, within which flight 
trajectories are similar to each other. The black curves, however, 
are flight trajectories classified as “outliers”, which do not 
belong to any of the natural clusters. The nominal routes for 
natural clusters are marked as white solid curves in the figures. 
The traffic shares of different clusters are summarized in 
TABLE V. Obviously, the flights from IAH to BOS have a more 

balanced cluster distribution, while the other four pairs always 
have one dominant cluster – usually the most direct path – that 
covers over 60% of traffic. 

 

Figure 1.  Clustering Results 

B. Model Selection and Performance Statistics 
We select the best hyperparameters based on the average F1 
scores over 3-fold cross validation on the 80% training set. And 
we further compare models with the best parameters based on 
their performance in the 20% testing set. The best 
hyperparameters and the corresponding F1 scores on the testing 
set are recorded in TABLE VI. , where Param. records the best 
parameter(s) selected for the associated model. Since there are 
multiple classes for each OD pair, each model will have a F1 
score for every alternative. Therefore, F1 max , F1 min  and 
F1 mean are, respectively, the maximal, minimal, and average 
F1 scores across all alternatives in the testing set. 

Generally speaking, the maximal F1 scores across different 
models are comparable for a specific OD pair, indicating that all 
four models perform considerably well in terms of precision and 
recall for at least one class – usually the one with the highest 
frequency. However, the minimal F1 scores differ significantly 
across models. Random forest and logistic regression in general 
perform better than the other two models, suggesting that RF 
and LR are more robust to overfitting. Lastly, random forest 
outperforms the other three models with respect to average F1 
score for all pairs except the case from IAH to BOS, where the 
gradient boosting algorithm is slightly better. While pairs other 
than IAH to BOS do have more imbalanced class distributions, 
random forest applies bootstrapping and oversampling 
techniques to overcome this issue, which explains its overall 
improved performance. 

            
           (a) IAH to BOS        (b) BOS to IAH 

                 
(c) FLL to JFK  (d) JFK to FLL (e) LAX to SEA 
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TABLE VI.  MODEL PERFORMANCE 

Model 
OD pair 

IAH 
BOS 

BOS 
IAH 

FLL 
JFK 

JFK 
FLL 

LAX 
SEA 

LR 

Param. C=0.1 C=1 C=150 C=0.1 C=0.1 
F1 max 0.53 0.73 0.88 0.87 0.81 
F1 min 0.00 0.11 0.07 0.00 0.18 

F1 mean 0.28 0.32 0.34 0.25 0.38 

SVM 

Param. C=100 
γ=0.01 

C=100 
γ=0.01 

C=100 
γ=0.01 

C=150 
γ=0.01 

C=100 
γ=1 

F1 max 0.54 0.74 0.91 0.89 0.83 
F1 min 0.00 0.16 0.00 0.00 0.09 

F1 mean 0.27 0.30 0.34 0.24 0.31 

RF 

Param. D=9 D=9 D=11 D=11 D=15 
F1 max 0.52 0.69 0.88 0.86 0.79 
F1 min 0.00 0.15 0.08 0.12 0.16 

F1 mean 0.28 0.37 0.37 0.37 0.39 

GB 

Param. 
D=15 

S=0.75 
LR=0.05 

D=25 
S=0.75 
LR=0.1 

D=25 
S=1 

LR=1 

D=19 
S=1 

LR=1 

D=25 
S=1 

LR=1 
F1 max 0.57 0.76 0.91 0.88 0.86 
F1 min 0.00 0.00 0.00 0.00 0.10 

F1 mean 0.29 0.30 0.35 0.27 0.37 

C. Importance of Features 
Feature importance is a metric that helps selecting relevant 
features as well as understanding the contributions of different 
predictors. For SVM and logistic regression, it is straightforward 
to use the estimated weights or coefficients ( [22]) to evaluate 
the importance of features. For tree-based algorithms, however, 
since there are no weight coefficients, estimating the feature 
importance is based on the change of prediction error (or 
impurity) when omitting designated feature(s) ( [23]). In this 
study, we use the best model for each OD pair (e.g., gradient 
boosting for IAH to BOS) to evaluate the importance of features 
for the variables listed in TABLE III. Notice that variables other 
than flight level generic variables, such as 𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, are 𝑁𝑁 
dimensional, where 𝑁𝑁 is the number of nominal routes, so that 
we sum the N dimensional feature importance for each of those 
variables. Furthermore, variables like 𝑊𝑊𝑊𝑊  and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  are 
highly correlated in a way that they both characterize the wind 
effect to the route choice; therefore, we sum the importance for 
those correlated variables and use the summation as their feature 
importance. To be more specific, feature importance for 
thunderstorm is the summation of 𝑇𝑇𝑇𝑇 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇; for MIT it 
is the summation of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑣𝑣𝑣𝑣𝑣𝑣 , 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑑𝑑𝑑𝑑𝑑𝑑 , 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑠𝑠𝑠𝑠𝑠𝑠 ; and for wind it is the summation of 𝑊𝑊𝑊𝑊  and 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. 

Figure 2. shows the feature importance for 12 different 
features. Each color represents a OD pair, and the heights of the 
bars indicate the relative importance of the features. The rank of 
the estimates in general matches our expectation. Wind has the 
highest impact on the route choice for all five pairs. 
Thunderstorm and rain exhibit comparable and large effects for 
most of the pairs. Other meteorological conditions, such as hail 
and ice, seem to have negligible impacts. Among non-

meteorological factors, MIT has the greatest importance for 
pairs except LAX to SEA, which might because very few 
nominal routes (with transformed time stamps) are actually 
matched up with the MIT data (less than 2%). Thirdly, the 
airline variable has very limited effect to IAH to BOS and BOS 
to IAH, since over 95% of traffic between the two comes from 
United Airlines. However, as the market becomes less 
concentrated, the airline effect increases. For example, the 
market for LAX to SEA is composed of 52% Alaska Airlines 
flights, 14% Virgin America, 13% SkyWest and 12% Delta 
flights, and in this case the airline effect has the third highest 
importance. Lastly, the variable 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 both 
have low effects, which could be largely absorbed by the 
weather variables. 

 

Figure 2.  Feature Importance 

V. CONCLUSIONS AND FUTURE RESEARCH 
This research proposes a novel approach to predict the aircraft 
route choice and understand the relative importance of 
convective weather, wind and miles-in-trail restrictions. The 
method is based on trajectory clustering in which geographically 
similar trajectories are grouped into clusters that are represented 
by the “centers” of the groups, which we call Nominal Routes. 
By using the trajectory cluster assignment as the ground truth of 
route choice, we are able to reduce the dimension of the choice 
set significantly. Furthermore, we demonstrate several practical 
algorithms that efficiently construct highly descriptive features 
with significantly lower dimensions for each flight by matching 
the nominal routes with different data sources (e.g., convective 
weather). Via the constructed features, we trained four popular 
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machine learning models – logistic regression, support vector 
machine, random forest, and gradient boosting – to predict the 
aircraft trajectory choice.  

Using this approach, we first compared four models (with 
parameters fine-tuned) on the testing set (20% of the full data) 
using the average F1 score. For the five city pairs considered in 
this study, random forest outperforms the other three methods 
for all pairs except IAH to BOS, for which gradient boosting has 
the best performance. For each city pair, we then use the best 
model to estimate the importance of different features. Results 
vary across OD pairs but in general, wind has the greatest 
importance, followed by thunderstorm and rain. MIT has 
moderately high importance for all pairs except LAX to SEA, 
where not many flights are matched with MIT restrictions. 
Airline has increasing importance as the market gets less 
concentrated. 

In addition to the merits of our approach, we point out 
several potential applications and future extensions. First of all, 
by predicting the route choice for future flights where weather 
forecasts are available, we are able to predict sector demand and 
analyze the en route performance, for example en route 
efficiency. Furthermore, for pairs where MIT plays an important 
role, our method helps decision makers to plan traffic 
management initiatives to manage flows more efficiently. 
Secondly, our predictive models in general perform well on 
classes with moderately high weights, however, their prediction 
precisions on least chosen classes are low. While this is mostly 
due to the imbalanced nature of the data, one could further 
increase the sampling rate for the least weight class. Finally, our 
approach can be easily adapted to more features, including other 
traffic management measures, such as Airspace Flow Programs 
(AFP) and Special Use Airspace (SUA) activations. Also, given 
the importance of convective weather revealed by our study, it 
would also be desirable to incorporate higher fidelity convective 
weather information, such as the national convective weather 
forecast (NCWF), into our analysis. 
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