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Abstract— Communication between pilots and controllers plays 
an important role in the Air Traffic Control (ATC) process. There 
have been many studies on the ATC communication analysis but 
rarely on the suppression of voice activity. A censored regression 
model with a stochastic right-censored threshold is developed to 
estimate the relationship between ATC communication voice 
activities and the ATC operational environment through a wide 
and representative set of real operational ATC voice recordings. 
The model estimation result shows that flight operational volume, 
lead flight operations, time of day, meteorological conditions, 
visibilities, wind conditions, anomalous flight operations and 
runway configurations are good indicators of the ATC 
communication. Lastly, we use the estimated model to simulate the 
loss percentage of ATC communication. This study has profound 
implications on further understanding of ATC system capacity, 
aviation safety and human performance interfacing ATC. 

Keywords-ATC voice communication; frequency congestion, 
workload, censored regression, human performance 

I.  INTRODUCTION  
In order to increase the Air Traffic Control (ATC) system 

capacity and enhance airspace safety, Air Navigation Service 
Providers (ANSPs) have been looking for a way to better 
understand the operational processes and activities in the ATC 
system. Communication is central to the ATC process. At 
present, voice communication via radio is still the primary 
means for Ground-Air traffic communication. Also, effective 
radio communication between Air Traffic Controller (ATCO) 
and pilots has long been recognized as an important element of 
aviation safety [1]. ATCO’s workload has been a topic of 
numerous studies due to its importance [2]. However, there is 
little research in the open literature concerning the suppression 
of ATC communication activity due to frequency congestion or 
ATCO workload. 

From a frequency channel occupancy perspective, a single 
frequency channel is capable of handling only one ATC 
communication transmission within a specified time period. In 
other words, each message between ATCO and pilot requires a 

certain amount of time to complete. Once the frequency 
utilization reaches a saturation point, the frequency congestion 
occurs. Frequency congestion has been identified as “clearly the 
worst communication problem confronting the aviation system” 
[4]. It increases the chances that one pilot may accidentally 
override another, thus requiring the transmission to be repeated, 
resulting in potential safety issues [3]. 

From the ATCO’s workload perspective, even if the 
frequency channel is available and free to be used, ATCO 
cannot work uninterruptedly under pressure. As the number of 
flights being tuned to a particular frequency channel increases, 
ATCO cannot transmit messages with all the pilots at any 
desired time. In order to reduce workload, ATCO usually has to 
prioritize flights with higher importance (e.g., medical/fuel 
emergencies) and keep the others waiting, reduce the gap time 
between two voice messages, or make a tradeoff between 
information provided and the transmission time [3]. 

Thus, the ATCO workload and frequency congestion, which 
suppress the ATC communication voice activities, are important 
aspects of ATC system capacity. Without this limitation, 
frequency channel should have been always free to be used - 
pilots and controllers would be able to transmit messages at any 
time and receive an immediate reply without any other traffic 
concern. We refer to the percentage of time a communication 
channel is utilized in constraint-free environment as the Free 
Active Rate (FAR) in this study. The percentage utilization that 
results from the limited capacity, either of the frequency 
channel or of the controllers’ ability to communicate, is called 
Constrained Active Rate (CAR). 

There is little research to investigate the loss of ATC 
communication voice activity, mainly due to the inaccessibility 
of the real ATC operational voice recordings. To fill this gap, 
we utilize a set of ATC audio data to investigate whether, and to 
what degree, voice communication activity is constrained by 
limitations in channel or ATCO capacity. We first applied 
several signal processing algorithms to detect and recognize the 
ATC communication voice activities. Regression analysis is 
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performed to understand how those activities relate to different 
drivers of communication activity.  

Most of the literatures in ATC voice recording analysis has 
been specific to en route communications in attempt to reduce 
frequency congestion by dividing a saturated ATC sector into 
two smaller sectors [5][6]. Only a few studies focused on tower 
controllers [3][7], who use visual observation to instruct 
aircrafts to land safely or give clearance to departing aircrafts. 
In this study, we focus on tower controllers at John F. Kennedy 
International Airport (JFK). 

The remainder of this paper is organized as follows: section 
II describes our data sources and how we preprocess and fuse 
different datasets. Section III introduces a censored regression 
model that ascribes CAR with different factors. In section IV, 
we apply the model estimation results to simulate CAR under 
different scenarios. Section V offers the conclusion. 

II. DATA SOURCES AND PREPROCESSING 

A. Data Sources 
In this study, we use four different sources of data. The ATC 

audio dataset, which comes from an audio streaming site 
(LiveATC.net), provides historical voice communications 
between controllers and pilots ranging from clearance delivery 
to approaches. There are four frequency channels available on 
the website: CAMRN, ROBER, Final and Tower. CAMRN 
routing over south waypoints and ROBER routing over east 
waypoints are in the Terminal Radar Approach Control 
(TRACON) area. TRACON controllers are responsible for 
avoiding conflict in the airspace and descend the traffic to 
between 4000 feet and 2000 feet then hand them off to the “Final” 
controllers. “Final” controllers are supposed to establish proper 
spacing and assign the traffic to the Tower frequency channel. 
Tower controllers will make sure the proper separation between 
every departure flight and arrival flight. For the interests of this 
study, we focus on the communications from the two tower 
audio channels at the JFK airport for the final approaches and 
clearances. While LiveATC provides separate audio tapes for 
two frequency channels and one tape that recursively merges 
two tapes (to avoid overlapping audios), we used the later in our 
study.  Although one could argue this may overestimate the 
communication suppression, we treat it as an appropriate 
approximation since the runway assignment of a flight － which 
frequency it would employ －cannot be obtained or inferred 
from the supporting datasets. The time frame of the data is from 
March 1st to December 31st in 2017, except five days in October 
in which recordings were defective.  

Our second and third datasets both come from the FAA 
Aviation System Performance Metrics (ASPM) – ASPM flight 
level dataset and ASPM airport information dataset. While the 
former provides detailed information about scheduled/actual 
departure/ arrival times for individual flights into or out of JFK 
airport, the latter provides airport information for each quarter 
hour, including meteorological conditions (i.e., IMC and VMC), 

ceiling (in feet), visibility (in statute mile), wind speed (in knots), 
wind angle (degree), and airport runway configuration. Both 
datasets are collected at the same time period as the audio dataset.  

The fourth dataset －trajectory-based anomaly score － is 
obtained from Metron Scientific Solution, Inc. (thereafter 
Metron). 7 anomaly indicators extracted from the 4-d trajectory 
in the JFK terminal area were used to identify various aspects of 
the flights that might have safety or efficiency problems: (a) 
maximum lateral distance (in feet) the flight’s track overshoots 
the Extended Runway Centerline (ERC), (b) angle (in degrees) 
at which the track intercepts the ERC, (c) speed (in knots) when 
track intercepts the ERC, (d) glide path angle at intercept (in 
degrees), (e) long-period altitude tracks and (f) long-period 
heading tracks. All these anomaly indicator scores were 
weighted and combined as the Normalcy Score Broker (NSB) 
for each flight. The NSB are normalized from 0 to 1 by 
converting to their percentiles, with larger score indicating more 
anomalous points. A flight scored 0.9 is the 10th percentile 
anomalies flight in the detection dataset. 

The following subsections introduce how we preprocess the 
four data sources and fuse them together. 

B. Voice Activity Detection (VAD) 
The first diagram in Figure 1.  shows a 150-second sample 

of a voice clip on April 19, 2017. The sampling rate of the audio 
is 22,050 Hz, thus each point in the diagram represents the 
instantaneous signal strength (in Voltage) for 1/22050 second. 
For the purposes of calculating CAR, we apply a standard 
spectrum analysis algorithm (i.e., short time Fourier 
transform)[8] to each 30-minute audio file to find its 
characteristics such as energy in a time-frequency domain. 
Algorithm specifics can be found in TABLE I.  A 3D 
representation of the original audio signal – frequency, time and 
energy – is shown in the second diagram of Figure 1.  

TABLE I.  PARAMETER SETTINGS FOR THE SPECTRUM ANALYSIS 

Parameter Name (Unit) Value 

Window size (NFFT, frames) 2048 

Overlapping Rate 8% 

Overlapping window size (frames) 256 

 

After obtaining the spectrogram, we identify time periods 
when the audio channel is active. To tackle the issue of strong 
background noise that substantially degrades the accuracy of our 
identification results, we build up a Voice Activity Detection 
(VAD) algorithm described in TABLE II. by referring to the 
work of Pang [9]. Our VAD algorithm can identify the on and 
off time of each voice speech segment and calculate the CAR 
over a given period of time. 

This project is sponsored by NASA.  
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Figure 1.  The sinusoid and spectrogram of sample voice signal.  

C. Calculating Constrained Active Rate 
In this study, we calculate CAR in 5-minute time interval. 

Other studies in this field also take 4-minute interval prior to 
real-time flight operation as the modeling unit ([11], [11]). In 
addition, the voice data are stored every 30 minutes, so that 
grouping the audio segments into 5-minute time interval can 
avoid the inconvenience of overlapping two audio recording 
files, thus improve the calculation efficiency.  

TABLE II.  VOICE ACTIVITY DETECTION ALGORITHM 

Algorithm 1. Voice Activity Detection 
INPUT 
The mp3 files of voice data from controller-pilot ATC tower 
communications at JFK airports. 
 
PARAMETER 
The number of points in the Moving Average Filter (default: 5) 
Voice detection threshold 𝒎𝒊𝒏𝑬 (default: 0 db./Hz) 
Minimum silence gap (default: 0.25 seconds) 
Parameters of the spectrum analysis can be found in TABLE I.  
 
OUTPUT 
The start and end point of voice activity; Constrained Active Rate (CAR) 
Step 1 Use the spectrum analysis method to get the power spectrogram, 
and convert the energy measurements to decibels/Hz. a  
Step 2 Divide the spectrum band into two halves: Lower Frequency Band 
(LFB) ranges from 0 kHz to 5 kHz and the Higher Frequency Band (HFB) 
is from 5 kHz to 11kHz.  
Step 3 Sum the spectrum energy of each speech window frame in LFB 
and HFB respectively, and apply the moving average filter to these 
summed values of each speech window frame. 
Step 4 The filtered spectrum energy in the HFB mainly represents the 
noise energy, while that in the LFB is dominated by voice pitch and 
harmonics. Therefore, noise cancellation can be achieved by subtracting 
the mean of Log noise energy in the HFB from the speech spectrum in the 
LFB of each speech frame. 
Step 5 Use the threshold 𝒎𝒊𝒏𝑬 to detect the active periods. 
Step 6 If the duration of non-speech sections is smaller than the minimum 
silence duration value, we merge the sections to the nearest speech 
sections. 
Step 7 The start and end time of voice activity is recorded and the active 
rate of each audio file is calculated and returned. 

a. Such conversion involves logarithm operations and may cause negative infinite values, we hereby 
convert all the negative infinite values to 0 

CAR ranges from 0% to 100%. The higher the CAR, the 
more congested the frequency channel was during that particular 
5-minute interval.  

D. Preprocessing ASPM Flight Level Data  
We extract three types of explanatory variables from the 

ASPM flight level dataset. First of all, we aggregate the number 
of arrivals and departures respectively by the wheels-on and 
wheels-off time for every 5-minute interval corresponding to the 
time interval of the CAR data. Furthermore, as the flight 
operation is a key component affecting ATC communication 
active rate, we also use a set of leading variables of arrivals and 
departures. To be more specific, for each CAR observation, we 
use the number of arrivals and departures of the subsequent two 
15-minute time intervals as the independent variables. Lastly, to 
understand how CAR differs in the day time, we use a dummy 
variable that equals to 1 if the observation time period is between 
6 AM to 6 PM local time. 

E. ASPM Airport Information Data 
Two processes are used to map the CAR data with different 

weather variables. First, we derive the headwind/ tailwind speed 
and crosswind speed with respect to the corresponding primary 
arrival runway configuration. Six most used runway 
configurations, which account for 80% of observations, are 
categorized respectively as six dummy variables. Each variable 
is set to 1 if the JFK airport used the corresponding runway 
configuration during the observed time period. Second, since the 
ASPM airport information dataset was recorded every 15 
minutes while our CAR data were computed every 5 minutes, 
we duplicated each ASPM record three times so that it can be 
matched with the CAR data.  

F. Trajectory-based Anomaly Detection Data 
We summarized the number of flights in different groups of 

anomaly scores – 0.6≤ NSB <0.7, 0.7≤ NSB <0.8, 0.8 ≤ NSB 
<0.9, NSB≥ 0.9, and NSB <0.6 – for every 5 minutes as in the 
CAR data. 

After preprocessing and matching different data sources, our 
final dataset has a total of 83,280 observations. The summary of 
variables is presented in TABLE III.  

III. ECONOMETRIC MODEL 

A. Censored Regression Model  
In search of the upper limit to ATC communication, four 

histograms of the CAR – March, June, September and 
December – are shown in Figure 2. , where the vertical lines are 
the 75th percentile of the data. The histograms are in general 
skewed to the left, suggesting a right censoring effect, which 
may result from suppression of voice activity due to frequency 
congestion or ATCO workload. In other words, limited capacity 
either of the voice channel or of the controllers and pilots using 
the channel “squeezes” the usage of the channels, resulting in 
few observations at high CAR values. On the demand side, 
especially during the peak hour, high traffic volume tends to 
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create demand for communications that may strain the voice 
channel capacity. Weather and wind conditions may also affect 
communication demand. We seek to understand how the effects 
of limited channel capacity and communication demand 
combined to determine the active rate. 

TABLE III.  MODEL VARIABLE DESCRIPTION 

Variable 
Code Variable Description (Units, per 5 minutes) 

Dependent Variable Category 

AR ATC communication active rate (%) ATC audio  

Independent Variable Category 

Dep The number of departures per 5 minutes 

Flight 
operation 

information 

Dep_i The number of departures in the i-th 
subsequent 15 minutes (𝑖 = 1,2, …) 

Arr The number of arrivals per 5 minutes  

Arr_i The number of arrivals in the i-th 
subsequent 15 minutes (𝑖 = 1,2, …)  

Day_dummy 1 if observed period between 6 AM and 
6 PM in local time, otherwise 0 

Headwind Headwind speed (knots) 

Airport 
condition 

Tailwind Tailwind speed (knots) 

Crosswind Crosswind speed (knots) 

MC_dummy 1 if operations under IMC; 0 if 
operations under VMC 

Visible Airport visibility (stature mile) 

Ceiling Airport ceiling (feet) 

RWY_i_ 
_dummy 

1 if the runway configuration 𝑖 is used 
during the observed period, otherwise 
0. Airport supplied runway 
configuration is represented as “arrival 
| departure). 

Anomolies (j) 

The number of anomolous flights in 
group j. 
𝑗 ∈ 	 {0.6 ≤ 	NSB	 < 0.7, 0.7 ≤
	NSB	 < 0.8,	 0.8	 ≤ 	NSB < 0.9, 
NSB ≥ 	0.9} 

Flight 
anomaly 
detection 

 

Due to the fact that we can only observe CAR in the ATC 
voice communication, using a naive linear regression will be 
biased [12]. A censored regression model, which is commonly 
used when the variable of interest is only observable under 
certain conditions, is used to estimate the relationship between 
the suppression of ATC communication and ATC operations 
under varying weather conditions. Also, Figure 2. suggests that 
the right censoring threshold is variable, since otherwise we 
would expect to see a large number observations close to the 
threshold value. Therefore, we assume that our censored 
regression model has a normally distributed threshold whose 
mean and variance are to be estimated. The details of the model 
will be presented in the next subsection. 

 
Figure 2.  Histogram of 5-minute Constrained Active Rate.  

B. Model Specification 
We use CAR, instead of power transformation, as the 

response variable in the censored regression model since the 
power parameter is close to 1 in the Box-Cox transformation. 
Consider our dependent variable 𝑦 , which is CAR, is the 
minimal of two normally distributed random variables. 
Therefore, we can write 𝑦 as in Equation 1, where 𝑔 𝑿 + 𝜀@ 
and 𝐶BCD are two Gaussian random variables. 

 𝑦 = 	𝐶𝐴𝑅 = min[	𝑔 𝑿 + 𝜀@, 𝐶BCD]. (1) 

Here we assume 𝑔 𝑿  is a linear function of the covariates 
(e.g., Equation 2), and 𝜀@ is a Gaussian random variable with 
zero mean and variance 𝜎@M.  

 𝑔 𝑿 = 𝑿𝜷. (2) 

The covariates 𝑿  include variables related to flight 
operations activity, airport weather condition and flight 
anomalies described in TABLE III.  The active rate predicted 
by	𝑔 𝑿   assumes that the pilots and controllers are able to 
transmit a message at any time and receive an immediate reply 
without any other concern. That is to say, there is no right 
censored limit or ATCO capacity constraint in the 
communication activity. We assume that the limiting value for  
𝐶BCD  is a Gaussian random variable with mean  𝜇M  and 
variance 𝜎MM. Thus: 

 𝐶BCD =𝐴𝑅BCD ~	𝑁	(𝜇M, 𝜎MM) (3) 

The parameters of the 𝐶BCD	 distribution must be estimated 
from the data. Lastly, we assume that the correlation coefficient 
between 𝑔 𝑿  and 𝐶BCD is ρ, which also needs to be estimated. 
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The probability density function (PDF) of 𝑦 can be derived 
as in Equation 4 [13], where 𝜑 ∙  and Φ ∙  are respectively the 
PDF and cumulative distribution function (CDF) of the standard 
normal distribution. We estimate the value of the parameters 
𝜷, 𝜎@, 𝜇M, 𝜎M, 𝜌  simultaneously using maximum likelihood. 
Notice that 𝜷 estimates the effect of X on the latent dependent 
variable 𝑔 𝑿 , not the CAR. 

 𝑓 𝑦 = 	 @
Z[
𝜑 \]^[	

Z[
×	𝛷 a \]^[

Z[ @]ab
− a \]^b

Zb @]ab
+

	 @
Zb
𝜑 \]^b	

Zb
×	𝛷 a \]^b

Zb @]ab
− a \]^[

Z[ @]ab
. (4) 

C. Estimation Result 
TABLE IV. shows the estimation results for (1) the linear 

regression model without considering censoring effect, i.e., 𝑦 =
𝑔 𝑿 + 𝜀@ ; (2) a censored regression model, i.e., 𝑦 =
min[	𝑔 𝑿 + 𝜀@, 𝐶BCD] , assuming 𝜌 = 0 ; (3) a full censored 
regression model considering the correlation coefficient (𝜌 ≠ 0). 

1) Model  selection 
Comparing the models, we observe that the OLS regression 

model without censoring effect has significantly lower log-
likelihood than both censored regression models and tend to 
underestimate the magnitudes of the coefficients. Comparing 
model II and III, while the majority of the estimates are similar, 
which matches our expectation, the log likelihood of model III 
is significantly larger and the results of likelihood ratio test 
reject the null hypothesis that 𝜌 = 0. Therefore, we use model 
III for the subsequent analysis. The positive correlation suggests 
that the communication pressure created by a positive FAR 
residual (or slack resulting from a negative residual) has a 
concomitant effect on 𝐴𝑅BCD. 

2) Right-censored threshold  
The estimation result of the right-censored threshold limit is 

µM =	 𝐴𝑅BCD = 	60.69%  and its standard deviation σM  is 
0.1054. Therefore, the maximum active rate has a probability of 
0.95 to be in the interval [40.03%, 81.35%]. In other words, the 
value of the FAR at which censoring would occur lies between 
these two values 95% of the time. 

3) ATC operational environment impact 
The vast majority of the estimates in TABLE IV. are 

significant and their signs match our expectation. The leading 
variables 𝐷𝑒𝑝nop  and 𝐴𝑟𝑟noM  are not significant and therefore 
were omitted from the model. The estimates for variables 
Ceiling and IMC are also insignificant. 

The audio active rate is strongly correlated with the current 
5-minute period flight operations and the leading operations up 
to 30 minutes in the future. And it is noted that the leading effect 
would decrease and dissipate over time. Higher visibility in 
statute mile decreases active rate, indicating a good 
meteorological condition potentially reduces the ATCO’s work 
load. 

TABLE IV.  MODEL EMPIRICAL RESULTS 

Variable Code 

Dependent Variable: 𝑨𝑹 
Parameter Estimate significant level 

(Standard Error) 
Model I: 

OLS  
Model II: 

Censored model 
Model III: 

Censored model 

ρ - - 0.5797*** 

(0.0248) 

𝜇M - 0.7438*** 

(0.0087) 
0.6069*** 

(0.0037) 

Dep 
0.0267*** 

(0.0003) 
0.0284*** 

(0.0004) 
0.0296*** 

(0.0004) 

Dep_1 0.0081*** 

(0.0001) 
0.0084*** 

(0.0002) 
0.0084*** 

(0.0002) 

Dep_2 0.0037*** 

(0.0001) 
0.0037*** 

(0.0002) 
0.0036*** 

(0.0002) 

Arr 0.0336*** 

(0.0004) 
0.0355*** 

(0.0005) 
0.0362*** 

(0.0005) 

Arr_1 0.0129*** 

(0.0002) 
0.0135*** 

(0.0002) 
0.0136*** 

(0.0002) 

Arr_2 0.0005** 

(0.0002) 
0.0002 

(0.0002) - 

Day_dummy 0.0097*** 

(0.0009) 
0.0078*** 

(0.0010) 
0.0061*** 

(0.0010) 

Headwind 0.0008*** 

(0.0000) 
0.0008*** 

(0.0001) 
0.0009*** 

(0.0001) 

Tailwind 0.0021*** 

(0.0002) 
0.0022*** 

(0.0002) 
0.0022*** 

(0.0002) 

Crosswind 0.0013*** 

(0.0000) 
0.0013*** 

(0.0001) 
0.0014*** 

(0.0001) 

Visible -0.0014* 

(0.0002) 
-0.0013*** 

(0.0002) 
-0.0014*** 
(0.0002) 

Anomalies 
(0.6≤ NSB <0.7) 

0.0053*** 

(0.0008) 
0.0060*** 

(0.0009) 
0.0068*** 

(0.0010) 
Anomalies 
 (0.7≤ NSB <0.8) 

0.0061*** 

(0.0008) 
0.0068*** 

(0.0009) 
0.0075*** 

(0.0010) 
Anomalies 
 (0.8≤ NSB <0.9) 

0.0064*** 

(0.0008) 
0.0073*** 

(0.0009) 
0.0084*** 

(0.0010) 
Anomalies 
 (NSB≥ 0.9) 

0.0086*** 

(0.0008) 
0.0100*** 

(0.0009) 
0.0112*** 

(0.0010) 
31L, 31R | 31L 
(45.0%1) 

-0.0496*** 

(0.0011) 
-0.0530*** 

(0.0012) 
-0.0528*** 

(0.0012) 

13L | 13R (13.9%1) -0.0303*** 

(0.0014) 
-0.0330*** 

(0.0015) 
-0.0331*** 

(0.0015) 
13L, 22L | 13R 
(8.4%1) 

-0.0161*** 

(0.0016) 
-0.0149*** 

(0.0018) 
-0.0116*** 

(0.0019) 
22L, 22R | 22R 
(7.0%1) 

0.0383*** 

(0.0017) 
0.0401*** 

(0.0018) 
0.0407*** 
(0.0018) 

4L, 4R | 4L (4.6%1) 0.0594*** 

(0.0019) 
0.0615*** 

(0.0021) 
0.0610*** 

(0.0021) 
22L, 22R | 22R, 
31L (4.5%1) 

0.0323*** 

(0.0020) 
0.0384*** 

(0.0023) 
0.0460*** 

(0.0026) 

𝜎@ - 0.1090*** 

(0.0003) 
0.1082*** 
(0.0003) 

𝜎M - 0.1556*** 

(0.0036) 
0.1054*** 
(0.0019) 

Constant 0.0975*** 
(0.0020) 

0.0926*** 
(0.0021) 

0.0899*** 
(0.0021) 

Observations 83, 280 
Log likelihood 68498.49 68617.76 68872.79 

***. Variables are significant at the 0.1% level 
**. Variables are significant at the 1% level 

*. Variables are significant at the 5% level 
1. Frequency of runway configuration in the data 
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Stronger winds, whether headwind, tailwind or crosswind, 
lead to more ATC voice activities. Tailwind speed has the 
strongest impact, probably because it increases the aircraft 
groundspeed at touchdown and lengthens runway occupancy 
time. More generally, higher winds, and in particular tailwinds, 
may increase the amount of voice communication required to 
maintain separation. 

Different runway configurations significantly impact the 
ATC voice activities. First, we define the runway utilization as 
the percentage of time that a specific runway configuration is 
being used in our study period. For example, JFK airport used 
31L, 31R as arrival runway and 31L as departure runway about 
45% of time during from Match to December in 2017. From 
TABLE IV. , we observe that the point estimate of the runway 
configuration fixed effect decreases as the runway utilization 
increases, which could be explained by the fact that pilots and 
controllers are more familiar with the frequently-used runway 
configurations. 

Finally, the daytime dummy variable has a significant, 
positive, effect on the FAR. This could reflect differences in 
visibility or operating conditions, but further research is required 
to understand this result. 

4) Anomalous flight operation impact 
We include four different levels of anomalous arrival counts 

in the model estimation. They all have positive and significant 
effects on active rate. Flights with anomalous trajectories appear 
to require more communication with the tower. If there is one 
flight in the 10th percentile anomalies group (NSB≥ 0.9), being 
controlled in the ATC operating system, the pilot-controller 
communication active rate will increase 1.12% on average 
relative to a “normal” flight (one with an NSB<0.6). As the level 
of anomalies rises, the active rate increases from 0.68% to 
1.12%, or 2-3 seconds. 

To summarize our results, the ATC voice communication 
active rate increases at heavy traffic, low visibility, strong wind, 
and trajectory anomalies, especially in the daytime. It also varies 
with runway configuration. 

IV. COMPARISON OF MODEL RESULTS UNDER ATC 
FREQUENCY CONGESTION 

In this section, we first apply Model III to simulate the ATC 
voice communication active rate for a range of inputs, and then 
compare these results under different scenarios. 

A. Data Simulation 
In order to evaluate the model performance, we use the 

coefficients 𝛽, 𝜇M, 𝜎@, 𝜎M, 𝜌 in TABLE IV. and original dataset to 
calculate CAR and FAR. First of all, we randomly draw 40,000 
records from our full dataset without replacement. Secondly, for 
each record, we only keep the independent variables 𝑋  and 
calculate 𝜇@ = 𝑔(𝑿) = 𝑿𝜷. Then we draw five sample vectors 
𝑌 = 	 𝑦@, 𝑦M  each with a sample FAR ( 𝑦@ ) and a sample 

censored value (𝑦M) from a multivariate Gaussian distribution 

with mean 𝜇@, 𝜇M  and the covariance matrix 
𝜎@M ρ𝜎@𝜎M

ρ𝜎M𝜎@ 𝜎MM
. 

Lastly, for each record and each sample vector 𝑌 = 	 [𝑦@, 𝑦M], we 
keep two different values: (a) 𝑌 = min	{𝑦@, 𝑦M}  to represent 
CAR and (b) 𝑌x = 𝑦@ to represent FAR. Therefore, we end up 
generating 200,000 CARs and FARs. 

 
Figure 3.  The CDF of Constrained Active Rate and Free Active Rate.  

 

As shown in the Figure 3. , the black curve is the CDF of 
CAR based directly on the data we observed from the voice 
recordings. The simulated CDF of CAR, which is the green 
curve, is more or less similar to the black curve (original dataset). 
The red curve represents the CDF of the simulated FAR without 
communication suppression. For low active rates, simulated 
CAR overlaps with the simulated FAR, and diverges somewhat 
from the observed CAR. This difference reflects the fact that our 
model specification allows negative CARs and FARs, and is not 
of practical importance. At higher active rate values, the 
observed and simulated CARs are very close, and we observe a 
small gap between the red FAR curve and the black/green curves. 
This gap reflects the effect of the channel occupancy constraint 
on communication. While the FAR assumes that 
communication is not limited by a maximum active rate, that 
limitation pushes the CAR distribution to the green curve. The 
ATCO workload and frequency congestion suppress the ATC 
communication voice activities, but not that much — the area of 
gap is small. This can be explained by the estimation result of 
the correlation coefficient ρ . The positive correlation, 0.58, 
suggests that the upper limit of ATC voice communication has 
a significant relation to the communication pressure created by 
a high FAR. It agrees with the fact that ATCO will increase their 
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capacity when there is a high demand for pilot-controller 
communication. 

We further quantify the gap between the CAR and FAR. Let 
𝐹z{| 𝑦 , 𝐹}{| 𝑦  denote the CDF of CAR and FAR, 
respectively. The shaded area is the difference in the 
expectations these two variables and can be calculated as:  

𝑆��C���	 = 	 [𝐹z{| 𝑦 −@
� 𝐹}{| 𝑦 ]	𝑑𝑦 =

	 {[1 −@
� 𝐹}{| 𝑦 ] − [1 − 𝐹z{| 𝑦 ]}	𝑑𝑦 = 	𝔼}{| 𝑦 −
	𝔼z{| 𝑦 = 38.17% − 37.51% = 0.66%	 . (5) 

B. Daytime/Nightime Comparison 
We compare the CAR and predicted FAR separately for day 

time and night time. First, we split the dataset into day time and 
night time inputs observations on the daytime dummy variable. 
Then we follow the procedure as described in section IV.A to 
generate a set of CARs and FARs under day time and night time 
condition, respectively. Figure 4.  presents the distributions of 
CAR and FAR for daytime operation in blue and red curves, 
night time operation in black and green curves, respectively. The 
area between the blue and red curves (daytime) is substantially 
greater than the area between the black and green curves 
(nighttime), indicating that communication constraints suppress 
more voice activity in the busier daytime hours. Numerically, 
the difference of CAR between daytime and nighttime is 6.14%. 
And also, we observe amount of observations whose active rate 
is 0% during the night time and few empty transmissions happen 
in the daytime because of traffic. 

 

 
Figure 4.  Daytime and nighttime comparison.  

C. Diurnal Variation 
Here, we are going to investigate the difference in predicted 

communication suppression by time of day, along with the 
impact of flight operational volumes. We apply the same 
simulation method as above to calculate gap between FAR and 
CAR in each hour. The number of flight operations per five 
minutes for each hour are counted by using average value from 
the same data set. For comparison, these values are plotted 
against the same timeline with different y-axis in Figure 5.  Not 
surprisingly FAR/CAR gap and flight operations show a similar 
trend over time. We also observed that there is almost no 
communication suppression from 0AM to 5 AM due to low 
traffic. 

 
Figure 5.  The frequency congestion and flight operational volume.  

V. CONCLUSIONS 
This research studies the existence and significance of the 

suppression of ATC communication voice activity due to 
frequency congestion or ATCO workload. This study firstly 
develops an efficient algorithm to detect the voice activity in a 
large sample of voice recordings under a real ATC operational 
environment. Using the voice activity data, along with the flight 
operation information, airport weather condition and anomaly 
detection results, a censored regression model with a stochastic 
right-censored threshold is estimated to show the relationship 
between ATC voice communication and the ATC operational 
environment. Flight operational volume, lead flight operations, 
time of day, meteorological conditions, visibilities, wind 
conditions, anomaly operations and runway configurations have 
significant impacts on the ATC communication voice activity. 
The substantial differences in estimation results for the 
uncensored and censored models strongly suggests the existence 
of a censoring effect. It suggests that ATCO will intentionally 
or unintentionally adjust the ATC voice communication active 
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rate at a manageable and acceptable level when there is heavy 
demand for communications, probably as a result of his/her 
workload and/or the amount of activity on the channel. 

Through data simulation and comparative analysis, we 
replicate the distribution. The difference between the simulated 
distribution of CAR and FAR indicates the loss of 
communication activity, measured by active rate, that results 
from an upper limit on the active rate. We find that ATC 
communication is suppressed by roughly 0.7% in the absence of 
this limit.  

In the future, monitoring CAR and the predicted FAR would 
allow detecting and predicting the loss of ATC communication 
activity on a real-time basis. The loss of ATC communication 
activity could be a helpful indicator to define the “critical points 
in time”. With on-board performance monitoring, we can extend 
the capability of ATC system once we know where the flight 
will be at capacity limit and what the ATC operational 
environment is. A further stage of this study will include the 
voice data from other frequency channels, more airports and 
other facilities in the analysis to evaluate how communication 
suppression varies across the NAS. More research on voice 
processing－for example speaker recognition so that ATCO and 
pilot communications can be reliably distinguished－and model 
specification is needed to assess the validity and reliability of 
this modeling approach. 
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