Scheduling at Congested Airports: Current Practices and Opportunities for Improvement

Alexandre Jacquillat 02/11/2015

Global Challenges to Improve Air Navigation Performance

Joint work with: Amedeo Odoni, Thomas Morisset, Nikolas Pyrgiotis

Talk Outline

- Comparison of US/EU airside performance (Amedeo Odoni and Thomas Morisset; Part of FAA - EUROCONTROL initiative; MIT effort funded by FAA through NEXTOR)
 - Comparison of scheduling policies at US and European airports and their impact on system performance
- 2. Optimization of scheduling interventions at busy airports (Amedeo Odoni, Nikolas Pyrgiotis, and Alexandre Jacquillat)
 - → Methodology to modify flight schedules to reduce demand-capacity mismatches, while minimizing interference with airline scheduling
- \rightarrow Opportunities for improvements in scheduling practices

References

1. Comparison of US/EU airside performance

T. Morisset and A. Odoni (2011), "Capacity, Delay, and Schedule Reliability at Major Airports in Europe and the United States", *Transportation Research Record*, 2214, 85-93 A. Odoni, T. Morisset, W. Drotleff and A. Zock (2011), "Benchmarking Airport Performance: FRA vs. EWR", *USA/Europe ATM Seminar*, Berlin, Germany T. Morisset (2010), "Comparing Capacities and Delays at Major European and American Airports", SM Thesis, Massachusetts Institute of Technology

2. Optimization of scheduling interventions at busy airports

N. Pyrgiotis and A. Odoni, "On the Impact of Scheduling Limits: A Case Study at Newark International Airport", *Transportation Science*, forthcoming
A. Jacquillat and A. Odoni, "An Integrated Scheduling and Operations Approach to Airport Congestion Mitigation", *Operations Research*, in review
N. Pyrgiotis (2011), "A Stochastic and Dynamic Model of Delay Propagation Within an Airport Network For Policy Analysis", PhD Thesis, Massachusetts Institute of Technology
A. Jacquillat (2015), "Integrated Allocation and Utilization of Airport Capacity to Mitigate Air Traffic Delays", PhD Thesis, Massachusetts Institute of Technology

Talk Outline

- Comparison of US/EU airside performance (Amedeo Odoni and Thomas Morisset; Part of FAA - EUROCONTROL initiative; MIT effort funded by FAA through NEXTOR)
 - Comparison of scheduling policies at US and European airports and their impact on system performance
- 2. Optimization of scheduling interventions at busy airports (Amedeo Odoni, Nikolas Pyrgiotis, and Alexandre Jacquillat)
 - → Methodology to modify flight schedules to reduce demand-capacity mismatches, while minimizing interference with airline scheduling
- \rightarrow Opportunities for improvements in scheduling practices

Current Practice

Policies Europe		USA		
Operations	Use of IFR all the time	Use of VFR, weather permitting		
Scheduling	Slot control	Weak scheduling constraints		

- → How does the use of VFR at US airports impact **throughput**?
- → How do the differences in US and European scheduling policies impact scheduling practices?
- → How does it impact airport **on-time performance**?
- Databases:
 - US: ASPM data
 - Europe: CODA data, plus additional datasets at German airports

Airport Capacity Estimates

Rank	IATA	Optimal Capacity ^a	IFR Capacity ^a	Rank	ΙΑΤΑ	Declared Capacity ^b
1	ATL	180-188	158-162	1	CDG	112
2	ORD	190-200	136-144	2	FRA	83
3	DFW	270-279	186-193	3	MAD	90
4	LAX	137-148	117-124	4	LHR	89
5	DEN	210-219	159-162	5	AMS	106
6	LAS	102-113	70-70	6	MUC	90
7	IAH	120-143	108-112	7	BCN	61
8	PHX	128-150	108-118	8	FCO	88
9	CLT	130-131 +20	9% 102-110	9	VIE	66
10	PHL	104-116	96-96	10	ZRH	68
11	DTW	184-189	136-145	11	MXP	69
12	MSP	114-120	112-114	12	LGW	50
13	EWR	84-92	61-66	13	BRU	74
14	JFK	75-87	64-67	14	IST	n/a
15	SLC	130-131	110-113	15	CPH	83
16	BOS	123-131	90-93	16	ORY	72
17	LGA	78-85	69-74	17	DUS	47
18	MIA	116-121	92-96	18	OSL	80
19	IAD	135-135	105-113	19	MAN	59
20	SFO	105-110	68-72	20	ARN	82

Massachusetts Institute of Technology **Engineering Systems Division**

MIT ESD

^a Airport Capacity Benchmark Report, FAA, 2004. ^b from EUROCONTROL or the individual airports

llir

- → Use of VFR at US airports has a positive impact on capacity (overall capacity about 25% higher than IFR capacity)
 - Higher capacities for each individual runway
 - More efficient use of multiple runways

- → Use of VFR at US airports has a positive impact on capacity (overall capacity about 25% higher than IFR capacity)
 - Higher capacities for each individual runway
 - More efficient use of multiple runways
- Comparison of airports with similar runway layouts

- → Use of VFR at US airports has a positive impact on capacity (overall capacity about 25% higher than IFR capacity)
 - Higher capacities for each individual runway
 - More efficient use of multiple runways
- Comparison of airports with similar runway layouts

	US Airports				European Airports	5
Layout	Airport W	eighte	ed Optimal	IFR	Airport Do	eclared
Single runway	SAN	55	57	49	LGW	50
					DUB	46
					TXL	48
					STR	42
Two closely spaced,	SEA	76	82	59	DUS	47
parallel runways					MAN	59
					NCE	52
Two pairs closely spaced	ATL	179	184	160	CDG	112
parallel runways	LAX	137	143	121		

- → Use of VFR at US airports has a positive impact on capacity (overall capacity about 25% higher than IFR capacity)
 - Higher capacities for each individual runway
 - More efficient use of multiple runways
- Comparison of airports with similar runway layouts
- → IFR Capacities at US airports are relatively close to (generally, slightly higher than) declared capacities at European airports
- → With the use of VFR, the overall (weighted) capacities of US airports are much higher than the declared capacities of their European counterparts

Scheduling at EU Airports (FRA)

- Evenly distributed demand profile from 07:00 to 21:00
- → Scheduling limit set w.r.t. IFR Capacity

Scheduling at US Airports (EWR)

- Uneven demand profile with extended afternoon peak
- → Schedules of flights produced w.r.t. VFR Capacity

Delays at EU Airports (FRA)

- → Average arrival/departure delays equal to 10/8 minutes
- Average delays remain relatively constant over the day

Delays at US Airports (EWR)

- \rightarrow Delays much larger than at FRA, on average
- Delays increase over the day due to overscheduling

Reliability at EU Airports (FRA)

- → Similar average and variability of delays over the day
- Schedule reliability remains constant throughout the day

Reliability at US Airports (EWR)

- → Increase in average and variability of delays over the day
- → Schedule reliability deteriorates over the day

Takeaways (somewhat simplified)

Aspect	Europe	USA
Capacity	Use of IFR all the time	Use VFR ~80% of the time
	Lower throughput (may not be "pushing the envelope" at some airports?)	Larger throughput
Scheduling	Slot control: Use of declared	Weak scheduling constraints
-	capacities	Scheduling w.r.t. VFR capacities
	Scheduling w.r.t. IFR capacities	Larger scheduling levels, with
	Lower scheduling levels	associated economic benefits
Delays	Better on-time performance	Worse on-time performance
	Lower delays	Higher delays
	More predictable delays	 More variable delays (e.g., sensitive to weather)
Overall	→ Premium on schedule reliability	→ Premium on capacity utilization

Opportunities

Throughput vs. On-time performance

- US airports: Demand management may be needed to avoid over-scheduling and extreme conditions
 - Hourly flight caps implemented at JFK, EWR and LGA in 2008, but loosely enforced and found too high to effectively mitigate congestion (US Dot OIG, 2010; GAO, 2012; de Neufville & Odoni, 2013)
- European airports: The approach to set declared capacities often lacks sophistication and may yield conservative results, resulting in access restrictions and capacity underutilization
- → Need for a better approach that quantifies and solves the trade-off between throughput and on-time performance

Talk Outline

- Comparison of US/EU airside performance
 (Amedeo Odoni and Thomas Morisset; Part of FAA EUROCONTROL initiative; MIT effort funded by FAA through NEXTOR)
 - → Comparison of scheduling policies at US and European airports and their impact on system performance
- 2. Optimization of scheduling interventions at busy airports (Amedeo Odoni, Nikolas Pyrgiotis, and Alexandre Jacquillat)
 - → Methodology to modify flight schedules to reduce demand-capacity mismatches, while minimizing interference with airline scheduling
- \rightarrow Opportunities for improvements in scheduling practices

A Schematic Example

Model Presentation

Inputs

- Original schedule of flights on a given day
- Estimates of airport capacity

Objectives:

- Reducing flight delays
- Minimizing interference with airline scheduling and network planning
- → Integrated Capacity Utilization and Scheduling Model (ICUSM)

Model Presentation

subject to: Scheduling constraints Network connectivity constraints Arrival queue length lower than A_{MAX} Departure queue length lower than D_{MAX} Model of airport operations

minimize

Experimental Setup: JFK Airport

Effect on Flight Schedules

- Smoothing of flight schedules
- Nonetheless, peaks and valleys in the optimal schedule
- Optimal tradeoff: delay reduction vs. scheduling preferences

Arrival Queue

_

-	A_{MAX}	D_{MAX}	Max. Disp.	Total Disp.
	∞	∞	0	0
	13	25	1	37
\rightarrow	12	20	1	105

Arrival Queue

Departure	Queue
-----------	-------

	A_{MAX}	D_{MAX}	Max. Disp.	Total Disp.
	∞	∞	0	0
	13	25	1	37
	12	20	1	105
\rightarrow	11	15	2	356

Arrival Queue

Departure Queue

	A_{MAX}	D_{MAX}	Max. Disp.	Total Disp.
-	∞	∞	0	0
	13	25	1	37
	12	20	1	105
	11	15	2	356
\rightarrow	10	10	2	$1,\!129$

Takeaways

□ At US airports, large delay reductions may be possible

- Peak arrival / departure delays reduced by ~ 35% / 55%
- Average arrival / departure delays reduced by ~ 20% / 40%

Takeaways

- □ At US airports, large delay reductions may be possible
 - Peak arrival / departure delays reduced by ~ 35% / 55%
 - Average arrival / departure delays reduced by ~ 20% / 40%
- □ ... through limited changes in airline schedules:
 - No flight eliminated, all aircraft, passenger connections maintained
 - ~ 80% of the flights to / from JFK not displaced
 - No flight displaced by more than 30 minutes
- Optimal demand profiles may not be "flat", and depend on airline scheduling preferences
- The model presented here provides a flexible methodology to design scheduling mechanisms at busy airports, while accounting for practical and institutional constraints

Talk Outline

- Comparison of US/EU airside performance (Amedeo Odoni and Thomas Morisset; Part of FAA - EUROCONTROL initiative; MIT effort funded by FAA through NEXTOR)
 - → Comparison of scheduling policies at US and European airports and their impact on system performance
- 2. Optimization of scheduling interventions at busy airports (Amedeo Odoni, Nikolas Pyrgiotis, and Alexandre Jacquillat)
 - → Methodology to modify flight schedules to reduce demand-capacity mismatches, while minimizing interference with airline scheduling
- \rightarrow Opportunities for improvements in scheduling practices

Opportunities for Improvement

Throughput vs. On-time performance

- □ **US airports**: Design of a scheduling mechanism that introduces "marginal" adjustments to flight schedules
 - Capitalizes on the nonlinear relationship between scheduling and delays
 - Provides the airlines with scheduling flexibility (as currently practiced)
 - Enables collaboration between the airlines and the schedule facilitators
- European airports: Opportunity for a more flexible approach to coordinate flight schedules
 - Optimal schedule may not be "flat"; exclusive reliance on declared capacity may not be optimal
 - Schedule determination depends on airline scheduling preferences; data exchange would enhance schedule coordination/facilitation processes

Thank you!

Questions?

