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Overview

<+ “Big giant head” approach to 4-D trajectory management in
not tenable
» Combinatorial problem
» Uncertain operating environment
» Limits on trajectory prediction performance
> Limits on communication bandwidth

<+ Pragmatic approach is to...

» Solve the trajectory management in stages where the transition between stages

are the points where we compensate for the uncertainties

= Analogous to “stage stops” for buses as opposed to trying to schedule the precise times at each bus
stop

» Leverage existing and developing technologies in a holistic way
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Optimized Arrivals ---
Optimizing the Descent
(Lateral and Vertical)



Continuous Descent Arrival

Streaming/Sequencing / Spacing Monitoring/Intervention

4 : Descent from Cruise Descent to Runway |Missed App.
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Sequence and spacing achieved during descent from cruise altitude (top-of-
descent) to altitude at metering point

No vectoring during descent to runway i.e. below altitude at metering point
Location of metering point dependent on traffic conditions
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What are the benefits and challenges of CDA?

<+ Benefits

> Environment

= Higher trajectory and reduced thrust over much of the arrival and approach results in reduced noise
impact
= Less time spent below “mixing height” and reduced thrust results in reduced emissions

» Fuel burn and flight time
= Fuel and flight time savings due to less vectoring and less time flying low and slow

» Lower controller and pilot workload

+ Challenge

» Need to determine the “right” spacing at the top of descent or transition

(metering) point

= Spacing determined so as to achieve a target cost (in terms of costly interventions) later in the
descent

» Requires quantitatively rigorous design methodology



RIIVR TWO ARRIVAL
(Optimized Profile Descent)
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Mo. of flights
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Arrival Flow Management --
Metering the Merge and Descent



Aircraft / Flap Schedule
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Probability Density

Separation Analysis Methodology

“The direct problem”

Required separation Target spacing at
at runway transition point

Range of spacing at runway
for a given target spacing at
transition point;

Shaded area equal to
confidence that descent to
runway can be completed
without controller
intervention;

Shape of distribution
depends on target spacing.

Spacing (nm)



Achieving the Desired Spacing

"ADAL 1076 B752/]
KPDX KATL
05:45 { 10:14{09:53

390 {457
530 b KATL

OKH3V

TEATL
f10:14 /NR

370/ NR

DAL 780 H/B763/]
KSAN KATL
05:53 £ 09:49 £09:36
050 £ 261

17 6nm to KATL

DAL 752 B7524]
KPHX KATL




Weather

RUC I
Wind Grids

ATDS

Tracking &

Routes

ACARS

M, Position,

Optimization Overview

Database

Aircraft

Performance

ETA, Winds

Flight Plan

M, Altitude,

Weight, Time

Schedule

Dep/Arr

Time

Procedure

Runway

\
| |
I | Separation Spacing :
| g . ) T
I Analysis Matrix || |
| |
N L v
o = _—_—_—————————— — S i - -—
/ \ /
| E R t | I vy VvV V
n noute
: i Trajector i Speed Speed
r Tra-] ectory Prejdictioz L g O timizer Advisories
I | Predictor : 1 | PP & RTAs
! I
\ N

Aircraft

|

ACARS

v

Messenger

Display

Configuration

L

“| Controller

GaTech, ATC, & OCC



Final ETA-

Initial ETA -

Example CDA Scenario (cont’d)
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Arrival time, Hours



Fuel Burn Difference, Kg
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Example CDA Scenario (cont’d)
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En Route Flow Management --
RTA Scheduling



Interactive-lterative Optimization
of Flight Plans

Earliest and Latest Departure Times

1L

Fight Planning Algorithms

Flow Regulator and Scheduler

11

Required Arrival Times at Fixes




En Route Flow Regulation

. Step 1: Develop set of airspace blockage scenarios for given

volume of airspace that are “consistent” with probabilistic
convective weather forecast

» Step 2: Develop efficient (fuel-optimal) conflict-resolution

algorithm

- Step 3: Derive “probabilistic capacity” over time using Monte
Carlo simulation that combines elements of Steps 1 and 2

» Step 4: Determine number of aircraft to send towards volume

of airspace using probabilistic capacities and two-stage
stochastic program

20
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En Route Flow Management --
Resolving Conflicts with Minimum
Economic and Environmental Cost



Fuel-Optimal Conflict Resolution

ROUTING APPROACH

Given an initial set of conditions describing aircraft (position,

airspeed, heading) in a region determine the instantaneous optimal

rerouting solution to clear the airspace.

( \ |
X
’

CoOsST FORMULATION

The cost function is the sum of group
fuel burn costs and heading
deviations, as well as individual fuel
bum and heading costs.

Fuel bumn is considered by minimizing
fuel burn per unit distance traveled
[kg/NM]. Appropriate weighting can
be applied to individual planes to

account for short or long distance e

flights.
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OPTIMIZATION METHODOLOGY

avoidance problem by expanding
the number of variables.

Projecting flight paths forward in @_
time increases complexity of N
i, \ &*) OF

Time vanables can be reduced in

'f\ i f *‘ the problem by projecting the
g . relative velocity between aircrafts
% to determine conflict
_"-" bt W_‘l,
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This formulation leads to a mixed integer
linear program (MILP), where aircraft
velocity and heading variables are
defined by vector components.
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Pair of airplanes generate constraints based on safety regions.



Optimal En Route Heading & Speed Changes
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Numerical Example
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Numerical Example (cont’d)
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Numerical Example (cont’d)

- Possible achieved savings compares results to historical data

if aircraft traveled at optimal speeds. Minimum fuel saving is
1.4%, a result of direct routing.

» If historical aircraft traveled at speeds 10% or 15% below

optimal speed, the potential savings are 3.37% and 6.13%
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Departure Flow Management --
Managing the Merge and Diverge



File ~

Edit +

View v

LAS

Departure Flow Management (DFM)

Departure Flow Management (DFM): ZLA Center
Help v

12 (12) A321
|~
U
o7

15 MIT

ll
|
|

%Eﬁ :
40 il

A0 MIT
5 MIT

Ted Carniol
Metron Aviation
703-234-0777 (0)
703-627-8323 (m)

15 April 2009



D)

D)

DFM Problem Statement

PROBLEM - Current air traffic management (ATM) operations
provide limited automation capabilities for coordinating
departure operations.

> Very labor intensive and slow process

» Process is inflexible as
= ATCTs only get the time that the TMC provides
= ATCTs have no knowledge of full range of release time options
= ATCTs have to repeat the process to adjust their release time when it cannot be met

SOLUTION - Initial Build of DFM is a web-based capability that
automates the APREQ release process

» Automated process with connectivity to all Towers
> Provides timelines of available release times to the Towers



DFM Solution
SOLUTION - Initial Build of DFM is a web-based capability that
automates the APREQ release process

<+ How it works (high-level)

> The ARTCC TMC creates FEAs using
a TSD to define the flows they need to
monitor

> The ARTCC TMC enters restrictions
on the flows using the DFM web
application

> DFM queries TFMS for the FEA flight
list and entry times

> DFM identifies all gaps in the restricted

flow and presents a timeline for the
TMC to monltor i Departure Flow Management (DFM) - LAX LAX Runway Configuration: [IIEEE

> When a pilot calls for taxi, the ATCT e : !
looks for the flight on their DFM web
application .

> If the flight is restricted, DFM shows all
of the available release times for the
flight

> The ATCT selects the desired release
time

> DFM assigns the flight to the first

available release time at or after the Tower Browser Display
desired time and sends this




Z0OB Scenario

TFMS ATCSCC
Airlines
DFM |
‘ Server | ARTGE <+ Rate Restrictions
| Controlled Departure Times
! ARTCC TRACON Automated Information Exchange
[ | Synchronized Data Flow
— Tower | | Tower Tower | | Tower
cope
TMU ADVSY
_'S( SAYRS 15 MIT 1030Z/1130Z
jL 3( 3( DUE TO WX
No TMI > > > S T S

All GAPS Filled

Merging departures into congested overhead flows,
particularly flows subject to MIT restrictions




ZLA Scenario

TFEFMS ATCSCC
Airlines

DFM | ARTCC

Server | |
l ARTCC TRACON ZLA TMU currently implements
independent Departure MITs for
| [ | flows over shared departure fixes

Tower | | Tower Tower | | Tower
DFM Scope

\L Coordinating departures from one or

more airports over a shared departure fix

TMU ADVSY
GMN 15 MIT 1030Z/1130Z
DUE TO VOL

N

All GAPS Filled



DFM Assignment of Release Times

Current Call for Release (CFR) Process

» Similar to TMA and EDC Paradigm
» Phone call to Center
» Assignment by the Center using DFM

Manual Approval Mode
» Electronic version of current CFR process
» Phone call to Center eliminated

Automatic Approval Mode
> Towers assign their own release times
» Center monitors times

TFDM
» Time assigned by A/IDMT
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Preliminary Architecture
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Runway Operations Planner

Deterministic Tradeoff Model Stochastic Two-Stage Model
Single-Runway Single-Runway
One runway Deterministic Tradeoff Stochastic Two-Stage
Model Model
More than
one Runway Two-Runway Multi-Runway
Deterministic Tradeoff Stochastic Two-Stage
Model Model




Taxiway Operations Planner

<+ Step 1:

Pushback/spot time estimates

Gate/spot locations ——

Runway assighments

Taxiway
Planner

predictions

<+ Step 2:

Pushback/spot time estimates

Gate/spot locations S

Runway assignments

Taxiway
Planner

Runway schedules (takeoff times)

Taxi out tig Runway

Planner

Taxiway
schedules



Ramp Operations Planner

Ramp 1 Ramp 2 Ramp 3

KRX xX . XXK
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{First Come First Serve) X Aitline 1: ready to push back
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X Aitline 3: ready to push back

Agrline 1 virtual plane

given its push back clearance.
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|
i
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Real push back
clearance
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Taxiway & Runways




