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Overview

 “Big giant head” approach to 4-D trajectory management in
not tenable
 Combinatorial problem
 Uncertain operating environment
 Limits on trajectory prediction performance
 Limits on communication bandwidth

 Pragmatic approach is to…
 Solve the trajectory management in stages where the transition between stages

are the points where we compensate for the uncertainties
 Analogous to “stage stops” for buses as opposed to trying to schedule the precise times at each bus

stop

 Leverage existing and developing technologies in a holistic way
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Optimized Arrivals ---
Optimizing the Descent

(Lateral and Vertical)
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 Sequence and spacing achieved during descent from cruise altitude (top-of-
descent) to altitude at metering point

 No vectoring during descent to runway i.e. below altitude at metering point
 Location of metering point dependent on traffic conditions



What are the benefits and challenges of CDA?

 Benefits
 Environment

 Higher trajectory and reduced thrust over much of the arrival and approach results in reduced noise
impact

 Less time spent below “mixing height” and reduced thrust results in reduced emissions

 Fuel burn and flight time
 Fuel and flight time savings due to less vectoring and less time flying low and slow

 Lower controller and pilot workload

 Challenge
 Need to determine the “right” spacing at the top of descent or transition

(metering) point
 Spacing determined so as to achieve a target cost (in terms of costly interventions) later in the

descent

 Requires quantitatively rigorous design methodology









VIKNN Fuel and Time Savings



Arrival Flow Management --
Metering the Merge and Descent
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Separation Analysis Methodology
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“The direct problem”



Achieving the Desired Spacing



Optimization Overview
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Example CDA Scenario (cont’d)



Example CDA Scenario (cont’d)



En Route Flow Management --
RTA Scheduling
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En Route Flow Regulation

 Step 1: Develop set of airspace blockage scenarios for given
volume of airspace that are “consistent” with probabilistic
convective weather forecast

 Step 2:  Develop efficient (fuel-optimal) conflict-resolution
algorithm

 Step 3: Derive “probabilistic capacity” over time using Monte
Carlo simulation that combines elements of Steps 1 and 2

 Step 4: Determine number of aircraft to send towards volume
of airspace using probabilistic capacities and two-stage
stochastic program
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P(cap · 10) = 0:01
P(10 < cap · 20) = 0:03
P(20 < cap · 30) = 0:07
P(30 < cap · 40) = 0:54
P(40 < cap · 50) = 0:25
P(50 < cap · 60) = 0:08
P(60 < cap) = 0:02

P(low cap)= 0.04

P(medium cap)= 0.61

P(high cap)= 0.35

Stochastic Capacity



En Route Flow Management --
Resolving Conflicts with Minimum
Economic and Environmental Cost



Fuel-Optimal Conflict Resolution



Optimal En Route Heading & Speed Changes
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Numerical Example
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Numerical Example (cont’d)



Numerical Example (cont’d)

 Possible achieved savings compares results to historical data
if aircraft traveled at optimal speeds.  Minimum fuel saving is
1.4%, a result of direct routing.

 If historical aircraft traveled at speeds 10% or 15% below
optimal speed, the potential savings are 3.37% and 6.13%



Departure Flow Management --
Managing the Merge and Diverge
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DFM Problem Statement

 PROBLEM - Current air traffic management (ATM) operations
provide limited automation capabilities for coordinating
departure operations.
 Very labor intensive and slow process
 Process is inflexible as

 ATCTs only get the time that the TMC provides
 ATCTs have no knowledge of full range of release time options
 ATCTs have to repeat the process to adjust their release time when it cannot be met

 SOLUTION – Initial Build of DFM is a web-based capability that
automates the APREQ release process
 Automated process with connectivity to all Towers
 Provides timelines of available release times to the Towers



SOLUTION – Initial Build of DFM is a web-based capability that
automates the APREQ release process

Center Browser Display

Tower Browser Display

DFM Solution

  How it works (high-level)
 The ARTCC TMC creates FEAs using

a TSD to define the flows they need to
monitor

 The ARTCC TMC enters restrictions
on the flows using the DFM web
application

 DFM queries TFMS for the FEA flight
list and entry times

 DFM identifies all gaps in the restricted
flow and presents a timeline for the
TMC to monitor

 When a pilot calls for taxi, the ATCT
looks for the flight on their DFM web
application

 If the flight is restricted, DFM shows all
of the available release times for the
flight

 The ATCT selects the desired release
time

 DFM assigns the flight to the first
available release time at or after the
desired time and sends this
information to the ARTCC TMC



DFM Conceptual Diagram
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 DFM seeks to increase departure flow efficiency by streamlining the coordination of departures from
multiple airports over shared and congested NAS resources through automation, decision support,
and communication capabilities

 DFM is an expandable web-based application  interacting with ETMS processes that:
 Supports TFM operations in the Tower, Center,  TRACON, and Command Center
 Coordinates release times for departures from multiple airports to ensure a smooth departure flow that meets capacity constraints
 Reduces TMC workload by expediting the communication of release times
 Estimates the impact of TMIs before they are implemented through ‘planning mode’

Merging departures into congested overhead flows,
particularly flows subject to MIT restrictions
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ZLA Scenario
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 Current Call for Release (CFR) Process
 Similar to TMA and EDC Paradigm
 Phone call to Center
 Assignment by the Center using DFM

 Manual Approval Mode
 Electronic version of current CFR process
 Phone call to Center eliminated

 Automatic Approval Mode
 Towers assign their own release times
 Center monitors times

 TFDM
 Time assigned by A/DMT

DFM Assignment of Release Times



Surface Flow Management



Preliminary Architecture

Airport
Configuration

Planner

Runway Operations

Planner



Runway Operations Planner

Multi-Runway
Stochastic Two-Stage

Model

Two-Runway
Deterministic Tradeoff

Model

Single-Runway
Stochastic Two-Stage

Model

Single-Runway
Deterministic Tradeoff

Model

Deterministic Tradeoff Model Stochastic Two-Stage Model

One runway

More than 
one Runway



Pushback/spot 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 Step 1:

 Step 2:



Ramp Operations Planner


