Development of a Greenhouse Gas Emission Inventory and Analysis of Emissions Reduction Strategies for Aviation

Megan Smirti, Mark Hansen University of California, Berkeley March 6, 2008

Initial Statements

- I do see the irony in my flying across the country to discuss aviation CO₂ emissions
- Acknowledgements:
 - UCTC for their support of this research
 - ATAC Corporation for technical analysis support, data gathering, and enthusiasm for the project
 - Elaine & Irene Kwan and Piu-Wah Lee, 3 dedicated and spirited undergraduate researchers
 - NEXTOR Graduate Students for their ideas, skills, data, and general support while I refine my thesis topic

Aviation & Greenhouse Gas Reduction: Scenario Analysis

- Scenario: Aircraft operators must reduce CO₂ emissions by a certain percent
- Responses:
 - Purchase offsets/credits from another industry
 - Reduce aviation-related CO₂ emissions
- Purpose of analysis
 - What is the least expensive way to meet this CO₂ reduction target?
 - Does it make sense to reduce CO₂ from aviation?

Domestic CO₂ Emissions

Profile **GHG Emissions by End-**Use Sector (EPA, 2006)

Industry Commercial Agriculture

Transportation

Residential

Transportation GHG Emissions (EPA, 2006)

Passenger Cars Light Trucks Heavy-Duty Vehicles Aircraft Locomotives Boats and Ships Other

Research Outline

- Develop high-level aircraft CO₂ emissions model
- Define study corridor and develop baseline CO₂ emissions inventory
- Define a taxonomy of strategies
- Test different scenarios
 - Aircraft swap
 - Mode shift to auto
 - Airport-access mode shift to electric vehicles
- Discuss cost of CO₂ emission reduction

Fuel Burn Model

- Predicts fuel burn for a flight as a function of
 - Stage length
 - Number of seats
 - Average age of type
- Estimated from Form 41 Aircraft Operation Data

Fuel Burn Model

All coefficients significant at 1% level

Regression	
Statistics	
Adjusted R	
Square	0.958
Observations	111

In(fuel burn) =

$$7.3687 + .8938 * \ln\left(\frac{SL}{mean(SL)}\right) + .71742 * \ln\left(\frac{SE}{mean(SE)}\right) + .7963 * \left(\ln\left(\frac{SE}{mean(SE)}\right)\right)^2 - .44182 * \ln\left(\frac{SL}{mean(SL)}\right) * \ln\left(\frac{SE}{mean(SE)}\right) + .016388 * Age + .013588 * Age * \ln\left(\frac{SE}{mean(SE)}\right)$$

Fuel Per Flight, Varied Stage Length and Seats per Flight

Research Outline

- Develop high-level aircraft CO₂ emissions model
- Define study corridor and develop baseline CO₂ emissions inventory
- Define a taxonomy of strategies
- Test different scenarios
 - Aircraft swap
 - Mode shift to auto
 - Airport-access mode shift to electric vehicles
- Discuss cost of CO₂ emission reduction

Study Network: The California Corridor

• All flights between these airports on the study days

Emissions Inventory Methodology

- Use BTS Data to obtain taxi times, stage lengths and tail number for all corridor flights
- Use World Fleet to match tail number with equipment and engine type
- Use ICAO database to obtain fuel flow for taxiing and LTO cycle
- Use fuel burn model and CO₂ conversion factors to predict total emissions from flights in this corridor
- Combine the above to break out total fuel MEXTOR

CO₂ Emissions: Average Flight Northern CA and Southern CA

Research Outline

- Develop high-level aircraft CO₂ emissions model
- Define study corridor and develop baseline CO₂ emissions inventory
- Define a taxonomy of strategies
- Test different scenarios
 - Aircraft swap
 - Mode shift to auto
 - Airport-access mode shift to electric vehicles
- Discuss cost of CO₂ emission reduction

First Strategy: Aircraft Swap

- Replacement aircraft: brand-new 100 seat aircraft
- Perform a capacity-preserving aircraft swap
- Decision rule for swap based on a minimum age for replacement

Percent Reduction in CO₂ Emissions From Capacity Preserving 100 Seat Aircraft Swap

Aircraft Swap Strategy Cost

- Cost Accounting
 - New Boeing 717 Purchase Price 2004: \$37.5 million
 - Daily cost of new B717: \$5,991,055

(20 year useful life, interest rate 15%)

- 55% of flights per day on unique aircraft, average of 370*55% = 204 aircraft
- Total cost: \$3,348,425/day
- Daily Reduction: 332,203,570 lbs (166,100 tons)
- Cost/Ton: \$3.35 million/166,100 tons=
 \$20.16/ton

Second Strategy: Mode Shift to Surface

- Investigate the possibility of reducing emissions through shifting modes
- Bus mode shift assumes capacity preservation and 40 seats/bus
- Vehicle mode shift assumes 75% load factor per flight and each passenger is shifted to a single vehicle
 - Prius
 - Sedan
 - SUV

CO₂ Emissions Change (Savings) Compared with Baseline For Varying Surface Modes

Mode Shift Strategy Cost

- Cost Accounting
 - All travelers will drive a Prius to destination airport
 - 2008 price: \$24,000, average 31,000 passengers per day
 - 31000 * \$24,000 = \$744 million in Prius purchases
 - Per day, with 10 year useful life and 15% rate: \$406,147/day
 - Value of Time: 4 hr*31000*\$50/hr = \$6.2 million/day
 - Operating costs: \$.40/mile*10.5 million miles/day
 - = \$4.2 million /day
 - Daily cost of strategy: \$ 10.8 million/day
- Reduction: 1,905,917 lbs/day (9,523 tons)

Cost of stratogy: \$10.8 million/0 522 ton

In-kind wittigation: Investments in Clean Airport

Access Modes

- Augment baseline CO₂ emission inventory to include airport access mode CO₂ emissions
- Replace with Electric Vehicle bus (CO₂ \rightarrow 0)
- Determine CO₂ emission reduction and cost

Aviation Access Mode Network

Quantifying Access Mode CO₂ Emissions

Mode Share Per Zip Code Per Origin Airport generalizes to sample days

	GHG Emissions	
	Operational	
Mode	(g GGE/ PMT)	
Sedan	230	
SUV	280	
rban Bus	330	
BART	230	

CO₂ Emissions for all trips Per Mode Per Zip Code Per Origin Airport

Multi-Modal CO₂ Emissions Distribution

If we broaden our view of aviationrelated emissions to include access modes, aircraft operators could save 11% over baseline CO2 **Emissions from** going to electric vehicles

Access Mode Strategy Cost

Cost Accounting

\$4,553/ton

- Buy 50 electric buses at \$70,000 per bus
 - Cost per day = \$559,165 Useful life: 20 years, interest rate: 15%
- Contract Bus Operators & Maintenance 20,000 per year/365 * 50 buses * 2 drivers per bus= \$5,480
- Time Cost = 20*2 min * 31000 pax * \$50/hr = \$1.03 million/day
- Daily cost of strategy: \$1,597,978/day
- Reduction: 702,148 lbs/day (351 tons)
- Cost/Ton: \$1.6 million / 351 tons =

Conclusions & Final Thoughts

- Certain reduction strategies are competitive with mitigation costs at projected CO₂ emissions prices
- Lifecycle costs
 - Operations are not the whole story
 - Over the life of an aircraft operational CO₂ emissions ~70%

System-wide impacts

- Some reduction strategies may require increased airport and airspace capacities (NextGen)
- Other reduction strategies may require increased road capacity