A member of

FAA Center of Excellence

Statistical Comparison between Flight Delays and Passenger Trip Delays

Asilomar, Sept 2007

Lance Sherry (Ph.D.)

Danyi Wang (Ph.D.), Melanie Larson (M.Sc. Candidate), Ning Xu (Ph.D. Candiadate) George Donohue (Ph.D.)

CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH

Education, Analysis and Research for the Next Frontier

Acknowledgements

- Dave Knorr, Joe Post, Dan Murphy, Anne Yablonski (FAA-ATO)
- Terry Thompson, Mike Brennan, Norm Fujisaki (MetronAviation)
- James Wilding (former President of MWAA)
- Mark Hansen (UC-B), Mike Ball (U-Md), Toni Trani (VT), JP Clarke (GA Tech)
- John Shortle, Rajesh Ganesan, Bengi Manley (GMU)

Context

Summary Results

- Passenger Trip Delays for Single Segment Flights = Flight Delays + Delays accrued by pax due to Cancelled Flights
 - 1. % On-Time Passenger Trips = "% On-Time Flights"
 - % On-Time Flights = % Arrive < 15 minutes + %Cancelled Flights (DOT)
 - Average Passenger Trip Delay for Passengers Delays > 15 minutes
 = Average Flight Delay for Flights > 15 minutes + <u>34 mins</u> (p = 0.9985)
 - 3. Average Passenger Trip Delay for Passengers in 95th percentile

= Average Flight Delay for Flights in 95^{th} percentile + <u>150 mins</u> (p= 0.9704)

A member of

FAA Center of Excellence

Background

CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH

7

Education, Analysis and Research for the Next Frontier

Pax Trip Performance

- Primary objective of air transportation system is
 <u>transportation of passengers</u>
- Scheduled Passenger Trip Time = Time
 Schedule to Depart to Time Scheduled to Arrive
- Actual Passenger Trip Time = Time Schedule to Depart to Time Actual Arrive
- Passenger Trip Delay = Time Scheduled to Arrive at Destination Gate – Actual Time Arrived at Destination Gate

Why Track Pax Trip Performance?

- Consumer Protection (DOT responsibility)
- Passenger Trip reliability critical property
 - positively correlated with airline profits:
 - Brand loyalty to Airlines
 - Brand loyalty to airports
 - (Belobaba, 1987; Suzuki, 2000)
 - Poor service reliability:
 - (on specific routes) correlated with reduced airfares (Shavell, 2000)
 - Increased government funding to FAA, airports
- Leading Indicator for NAS performance

Consumer Information

 Department of Transportation (DOT) Office of Aviation Enforcement & Proceedings (OAEP) monthly report:

– Air Travel Consumer Report (ATCR)

- ATCR:
 - "designed to assist consumers with information on the quality of services provided by the <u>airlines</u>"
 - Note: assumption: airlines directly control the quality of service

Consumer Information

- DOT Air Travel Consumer Report:
 - Percentage of on-time performance (OTP)
 - On-time < 15 minutes
 - plus % cancelled flights
 - Percentage of cancelled flights
 - Mishandled bags
 - Overbooking
 - Passenger complaints

Consumer Information

- Airline Quality Rating (AQR) (Bowen & Headley)
 - based on DOT ATCR data
- J.D. Powers Airport Satisfaction Report
 - Based on survey data

Flight Delays & Pax Delays

- Flight Delays are poor proxy for pax Delays
 - Bratu & Barnhart (2005)
 - Airline proprietary pax itinerary data
 - One month, one hub
 - 85.7 % pax not disrupted experience average flight delays = 15.4 minutes
 - 15.3% pax disrupted experience delays = 303 minutes
 - See also Wang, Schaefer, Wojcik (2003), Ball (200X), Mukherjee, Ball et. al (200X).

A member of

FAA Center of Excellence

Methodology

CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH

1

Education, Analysis and Research for the Next Frontier

Distribution of Flight Delays

13

Distribution of Pax Trip Delays

of Passengers

Pax vs Flight Delays

of Passengers

Estimated Passenger Trip Delays

- Single segment only (AOTP, T100)
 - Pax on Flights delayed < 15 minutes</p>
 - Pax Trip Delay = Flight Delay
 - Pax on Delayed Flights
 - Pax Trip Delay = Flight Delay
 - Pax on Cancelled Flights
 - Pax Trip Delay = Delay accrued until next available flight with same airline to same destination + Flight Delay
 - Takes into account Frequency and Load Factor
- Algorithm processes each individual flight record
 OEP-35 flights

Approximations

- Uses only publicly available data
- Passenger Load Factors for flight based on "average monthly" load factors
- Re-booking on same route (no rerouting)
- Re-booking on same airline (and subs)
- Upper bound for cancelled flight delays set to 15 hours (overnight)

- Assume pax rebooked on another airline

Sample Results (ORD to X)

		Flights			Passengers		
ORIGIN	DEST	15-0TP	Avg. Magnitude of Flight Delays	Avg. Worst- Case Magnitude of Flight Delays	15-P OTP	Avg. Magnitude of PaxDelays	Avg. Worst- Case Magnitude of PaxDelays
ORD	ATL	67 %	66	158	68 %	112	424
ORD	BOS	69%	67	159	69%	120	467
ORD	CLE	69%	59	146	70 %	116	465
ORD	CLT	75%	56	133	75%	88	298
ORD	CVG	74 %	55	127	75%	110	370
ORD	DCA	77 %	64	138	77 %	104	337
ORD	DEN	74 %	55	130	73%	81	267
ORD	DFW	75%	57	132	75 %	88	271
ORD	DTW	75%	58	139	75 %	92	310
ORD	EWR	58 %	76	198	58 %	106	396
ORD	IAD	75%	67	163	74 %	106	385
ORD	IAH	78%	57	129	79%	107	350
ORD	JFK	74 %	60	142	74 %	181	620
ORD	LAX	73%	56	135	73%	71	217
ORD	LGA	64 %	70	172	64 %	114	442
ORD	MIA	68 %	56	143	67 %	101	409
ORD	MSP	74 %	58	134	74 %	90	281
ORD	PDX	70%	55	140	70 %	68	209
ORD	PHL	69%	68	166	69 %	116	443
ORD	SFO	70 %	55	140	70 %	73	251

Trends (2000 - 2006)

Trends (2000 - 2006)

A member of

FAA Center of Excellence

Results

CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH

Education, Analysis and Research for the Next Frontier

On-Time Percentage

of Routes

Paired t-test <u>cannot</u> reject null hypthesis: μ Pax = μ Flights (p-value 0.1858) χ 2 test <u>cannot</u> reject null hypothesis : σ Pax = σ Flights (p-value 0.5618)

15 Mins < Delay < 95th Percentile

of Routes

□ Average Magnitude of Flight Delays ■ Average Magnitude of Passenger Trip Delays

Paired t-test <u>cannot</u> reject null hypothesis: μ Pax = μ Flights + 34 mins (p-value 0.9985) χ 2 test rejects null hypothesis : σ Pax = σ Flights (p-value 0.001) ²³

Delay > 95th Percentile Delays

Paired t-test <u>cannot</u> reject null hypothesis: μ Pax = μ Flights + 150 mins (p-value 0.9704) χ 2 test rejects null hypothesis : σ Pax = σ Flights (p-value 0.001) ²⁴

A member of

FAA Center of Excellence

Conclusions

CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH

Education, Analysis and Research for the Next Frontier

Consumer Protection

- Flight Delays cannot serve as proxy for Passenger Trip Delays
- Recommendation:
 - DOT publish metric for Estimated Passenger
 Trip Delays in ATCR
 - Estimated parameter (based on average monthly Load Factor and assumed airline rebooking policies)

Consumer Choice

Washington to Chicago Markets

Recommendation: DOT publish data comparing route options in ATCR (reflects network effects) ²⁷

Consumer Choice

<u>www.GreenFlights.INFO</u>

 Passenger Trip Delay Index (PTDI)
 = Expected Value for Pax Trip Delay

By airline flight

 Green Flight Index (GFI) impact of delays on weighted emmisions index

LGA - DTW

Traffic Flow Forecasting

- Metrics ATO-P Customer's-Customer
 - Leading Indicator for:
 - Flight Delays
 - Airline behavior change
 - TRACON/Airport "Pressure Points"
 - Inform "Passenger Bill of Rights" discussion

Mega-Trend Forecasting (NAS Strategy Simulator Module)

Airline

- Customer Service Coordination (CSC) Unit
 - Not AOC, dispatch, flight ops
- Study feasibility of managing passenger trip times (delays)
 - Apply algorithm to passenger itineraries
 - Manage AOC/Dispatch to "optimize" passenger flow
- Optimum "load factor"

Future Work

- Multi-segment flights
 - Connecting passengers
 - Diverted flights
- Improvements to algorithm
- Access to sponsors

Back-up Slides

Trends in Schedule Operations and Enplanements

Annual Scheduled #Operations

Annual Enplanements

