ATM Performance Framework

NAS Performance Workshop 5 September 2007

Xavier FRON

Performance Review Unit EUROCONTROL

Role of performance review

- Provide <u>independent advice</u> on ANS/ATM performance to <u>policy makers</u> and relevant information to all stakeholders (e.g. benchmarking and best practice), based on observation of achieved performance, consultation and information provided by relevant parties;
- Performance review closes the performance loop;
- It is the least intrusive form of regulation;

2

Performance Review Commission (PRC)

- Independent advisory role to EUROCONTROL governing bodies
- → Twelve commissioners supported by the PRU

Objective

"to introduce strong, transparent and independent performance review and target setting to facilitate more effective management of the European ATM system..."

Annual Performance Review Reports (PRR)

- Traffic
- Key ATM Performance Areas
 - Safety
 - Cost-effectiveness
 - Quality of service/ Environment
 - Capacity

ANSP benchmarking reports (ACE)

Special reports

- Evaluation of SES impact on ATM performance
- Fragmentation
- Punctuality drivers, etc.
- US/Europe comparison
- Comparison of aeronautical MET costs

PRR 2006 just published

Overview of ATM performance measurement framework

- Various perspectives on ATM performance (Political/ Social, User, Service provider);
- The PRC focuses on: <u>Safety</u>, <u>Cost-effectiveness</u>, <u>Service Quality</u> (Delays, flight efficiency), <u>Capacity</u> and <u>Environment</u> (Global aspects)
- ATM performance is affected by trade-offs (capacity vs. delay, etc.) and a number of performance affecting factors (weather, complexity, etc.) which need to be captured in a balanced view

Performance Review Commission www.eurocontrol.int/prc 4

How the PRC analyses ANS performance

Air traffic demand in Europe

(before 1997, estimation based on Euro 88 traffic variation)

source : EUROCONTROL

Sustained growth continued in 2006

- Average annual growth +4.1%;
- Between 0% and 19% at State level;
- +24% for "low fare" airlines (16% of traffic)
- +11% for business aviation (7% of traffic)

Traffic forecasts

- Short, medium, long term forecasts from EUROCONTROL STATFOR
- Challenges to Growth study (2004) being updated
- Suppressed demand due to airport capacity limitations

Challenges to Growth 2004 Report

Performance Review Commission *www.eurocontrol.int/prc*

7

Measuring Safety Performance

 Approach to measuring safety is wider than merely focusing on the level of achieved safety of the existing ATM system under certain conditions (accidents, incidents);

• Maturity of safety processes are as important as the measurement of achieved safety;

Accidents/incidents

A posteriori check Lagging indicator It's too late!

Leading indicator Informs safety management

Voluntary reports: Useful, but reliable? Systematic screening

Loss of separation, runway incursions, etc

Safety maturity

Are safety processes, legislation, culture in place?

	Legislation	Culture	
Austria			
Belgium			
Bulgaria			
Cyprus			
Czech Rep.			
Denmark			
Finland			
France			
Germany			
Greece			
Hungary			
Ireland			
Italy			
Luxembourg			
Netherlands			
Norway			
Poland			
Portugal			
Romania			
Slovakia			
Slovenia			
Spain			
Sweden			
Switzerland			
UK			

Safety Performance targets

System risk is quadratic: Incidents/hour x4 when traffic x2

<u>Aircraft risk</u> is linear: Incidents per flight-hour x2 when traffic x2

Performance to date

- Increasing number of incidents reports: more opportunities for learning, prevention
- Severe incidents (A&B) don't appear to increase in sample of 15 "mature" European States

Target (s)

- European (ATM 2000+) objective: Number of accidents and serious incidents not to increase: Very challenging!
- Current target: <1.55.10⁻⁸ accident per flight hour No corresponding indicator so far
- PRC proposed interim target (maturity)

Future system

- Safety may be the most challenging
- Safety needs to be engineered in next generation design from the start

SESAR target

- System risk does not increase (no more accidents)
- 2020: Traffic: +73% => Safety x3 vs trend
- Later: Traffic x3 => Safety x10 vs trend

Service quality

Analysis of Air transport delays

Departure punctuality

- 21.4% of flights arrived late in 2006 (23.1% in US)
- Departure delays originate principally from turnaround processes (79% of primary dep. delays)
- Reactionary delays are increasing

Performance Review Commission www.eurocontrol.int/prc

Arrival and departure delays

Arrival delays are mostly driven by departure delays Departure delays mostly from airlines/airports processes Amplification of delays at some airports (Departure delays > arrival delays)

Air transport predictability

- Standard deviations of departure and arrival times reached 18 and 20 minutes respectively
- Pre-departure processes play a main role in this poor predictability, and ATM only a minor role.
- Lower punctuality and predictability negatively impacts the ability of airlines and airports to build and operate reliable and efficient schedules.

Airport capacity/ delay trade-off

- Trade-off airport capacity / airborne delay
- Airport scheduling impacts ATM performance (TMA holding, environmental impact)
- Smoothing arrival flows and landing rates significantly improves the trade-off

Performance Review Commission www.eurocontrol.int/prc 17

Improving air transport network performance

- Air transport punctuality and predictability could be improved in several ways:
 - Improving adherence to scheduled departure times
 - Maximising the use of airport capacity whilst minimising delays.
 - Optimising the ground vs. airborne holding trade-off.
- SESAR places emphasis on flexibility (ability to recover from non nominal situations)
- Comparable metrics to be developed and agreed (Punctuality, ATM ground and airborne delay, etc).

Ground delays managed by ATM

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

ATFM delays (ground)

- Flows essentially controlled through ground delays in Europe, MIT in US
- Major improvement in Europe since 1999
- 2002-05 ATFM en-route target met;
- ATFM delays increasing again since 2004;
- Estimated en-route ATFM delay costs: € 550 M in 2006

Target (s)

- Trade-off delay/cost of capacity;
- · Set with reference to optimum capacity/delay
- · En-route ATFM: 1 minute per flight
- Others (i.e. ACC) to be developed

Management

· Co-operative capacity management;

ATFM Delays: Target setting

- Trade-off delay/cost of capacity
- Target setting based on understanding of optimum
- Optimum changes with improved cost-effectiveness (dynamic efficiency)

www.eurocontrol.int/prc

ATFM delay causes

Service quality (continued)

Flight Efficiency

23

	Total 2006
Route Extension (%)	5.9%
Extension per flight	48.6 km
Additional distance	441 M km
Estimated costs to airspace users	€ 2 230 M
Additional CO ₂ emissions	4.7 M tons

Direct link with environmental impact

- Cost of horizontal route inefficiencies is estimated at 2.2 billion euro, to which vertical and TMA inefficiencies have to be added.
- Significant environmental impact (4.7 million tons of CO₂ per annum)
- Costs increased further due to higher fuel prices in 2006

Strategic design and use of airspace are the main origins of route inefficiencies

ce Review Commission

En-route design

Flight efficiency (horizontal)

There appears to be room for significant improvements:

 Domestic-AVG Intra-European-AVG Domestic Intra-European 7% Direct routeextension (%) 6% 5% 4% 3% 2% 1% 0% 0-400 km 400-800 km 800-1200 km 1200-1600 km 1600 -2000 km >2000 km Great Circle Distance (between TMA)

 Only minimal improvements in flight efficiency during week-ends (essentially no airspace restrictions)
=> 130 million Euro could be saved every year if the route network was one third more efficient during week-ends.

• Intra-European routes are significantly less efficient than domestic routes.

=> If the European route network was as efficient as the domestic networks, as one would expect under the SES, 150 to 300 million Euro could be saved every year.

Flight efficiency (horizontal)

- Trade-off capacity flight-efficiency: don't jeopardize capacity where little margin
- Objective: a more efficient Trans-European network of upper airways

Flight-efficiency: Route selection

Example: Amsterdam to Torino

Airspace structure

En-route congestion

Route charge differentials

Flight Efficiency (horizontal): Conclusions

Target

OUTLOOK

	2006	2007	2010	Total
Number of flights (million)	9.6	10.0	11.2	
Target (km per flight)	48.6	46.6	40.6	
Distance saved (million km)	0	-20	-90	-216
Cost savings (million euro)	0	-100	-450	-1 080
CO ₂ savings (million tons)	0	-0.2	-1.0	-2.3

Performance to date

- Horizontal en-route flight efficiency is a major ATM performance issue;
- Cost of horizontal en-route route inefficiencies is estimated at 2.2 billion Euro;
- Significant environmental impact (4.7 million tons of CO2 per annum);
- Costs increased further due to higher fuel prices in 2006;

Indicators and trade-offs

- Safety and capacity gains require a certain level of "inefficiency" in the route network;
- Focus has been on safety and capacity so far;
- Need to develop indicators to measure vertical flight efficiency and TMA inefficiencies (airborne holdings);

Target

 Agreed target is to reduce the additional distance flown due to route extension by 2 km per flight each year until 2010

Framework for analysis of ATM performance

Performance Review Commission www.eurocontrol.int/prc 31