The Design of Secondary Markets for Slots

John Ledyard
California Institute of Technology

Markets for regulated assets

- Markets improve economic efficiency
 - Aggregate profits of the users are higher
 - Gains can be shared winners can compensate losers
- An old problem and solution
 - Commons dilemma
 - Overgrazing a shared resource
 - Solution: create limited access
 - Enclosure movement
 - Political problem: who gets to keep the gains?
- Applications: Environment (smog credits),
 Project management (Cassini spacecraft),
 Fishing rights, Scheduling fixed capacity
 (computers, MRIs, classes, NASA shuttles,..)

How does it work?

- Markets align incentives with information
- Command and control (top down engineering) punishes resource saving innovation
 - If I admit I can realign my schedule and save use,
 will lose that right to use. (No good deed....)
- Markets reward organizations which recognize and implement resource saving innovations.
 - If I can realign my schedule and save use, I can sell or trade that right and pocket a gain.
 - Notice that the person I sell to also gains

There is not just one market

- Primary Market the initial allocation of a right from regulator to regulated
 - Lottery, auction, grandfather,
 - Determines allocation of gains
 - There can be winners and losers
- Secondary Market the reallocation among the regulated (sans consent of the regulator)
 - Where the gains are created
 - Voluntary trade implies all parties to the trade gain

My focus today is on Secondary Markets

- What are features of good secondary markets?
- Steps in setting up a market
- Examples from other situations

 Note: I will present this as if it is only a scientific problem. It is not. It is often a difficult negotiated compromise.

What makes a market work?

- Voluntary trade occurs when both parties gain
 - Those with less immediate value sell to those with more immediate value
 - Want all such possible gains to occur easily
 - Liquidity
- Some examples
 - Good markets: T-bills, LA-NYC flight, bread
 - Mediocre markets: houses, cars, corp bonds
 - Bad markets: clean air at 330 California Blvd in Pasadena CA in 2050, insurance against floods in 2007 in New Orleans
- How does this apply to slot markets?

What steps must be taken to set up a market?

- Decide what is to be traded
 - The property right
- Decide who can participate
 - Who qualifies to participate
- Decide on the market design
 - Brokers or call or continuous, etc.
- Clearance and settlement
 - Enforcement and market regulation

What is to be traded?

- What we would like for good markets
 - Lots of traders, order flow = Liquidity
 - Renewable perishable good, new information,
 - Homogeneous commodity, transparency
 - No encumbrances
- Regulators vs Market Designers
 - Control vs liquidity
 - Homogeneity good for liquidity
 - Slots usable any time
 - Heterogeneity good for control
 - Slot only good for 15 minute period if VFR in summer

An example: Scheduling a shared resource

- Availability known
 - Choose time periods (a compromise)
 - Fix quantity of each period, allocate, allow trading
 - Price will be the correct peak-load price
 - Cost based prices are almost always wrong!
 - Eliminates planned delays, allows better planning
- But if there are random shocks to supply
 - Shuttle launches, hot days in electricity, IFR vs. VFR,
 - Then designing for max availability means delays in low supply situations

An example: Scheduling a shared resource

- Availability unknown (random shocks)
 - Choose Priority classes (interruptible demand) and quantities in each (two is usually enough)
 - Allocate and allow trading prices will be the correct congestion prices
- Improves coordination in response to anticipated but random events
 - Better planning, easier re-scheduling
 - Improves efficiency (those who benefit most from use in restricted times will pay for and get it)

Who can participate: buy, sell, hold?

- What we would like for good markets
 - Everyone: Airlines, Airports, Passengers,
 Speculators,
 - Speculators (arbitragers) provide liquidity, would lose \$ if not used (so might expect leases),
 - Passenger organizations could buy and hold slots if they don't like delays... (free rider problem)
- Possible problems
 - Looks bad if not "used"
 - Cornering the market, hold up problems

What market design to use?

- What would we like for good markets?
 - Liquidity and Transparency
- Some options
 - Frequency: Brokered or continuous or call markets or
 - Call markets improve on "brokers"
 - Multilateral information vs. bi-lateral information
 - Types of bids: Separate market for each type of slot or package bidding across all slots
 - Package bidding (e.g. swaps) reduces risk of incomplete transaction is the key to improving efficiency through reallocations of schedules, etc. (Portfolio alignment problem)
 - All or none bidding reduces risk of incomplete acquisition.

What market design to use?

- What would we like for good markets?
 - Liquidity and Transparency
- More options
 - Information during market: Blind vs not
 - Closed book (blind) improves efficiency of the market
 - Closed book means only see clearing prices
 - Combined Value seeing quantities ordered can help fitting (don't need to know the names)
 - Information after market: report trades or not
 - Want to protect strategic information
 - Knowing all opportunities and prices is the key to better investment decisions
 - Can post prices and quantities without names of traders.

Oversight and Modifications?

- Oversight issues:
 - The property right
 - Clearance and settlement
 - Package bidding poses some challenges
 - Can clear multi-lateral deals bi-laterally
 - But unraveling can occur
 - The market operator
- Modification issues:
 - Creating and retiring rights
 - Can the market do this?

Example - Emissions trading for SCAQMD (RECLAIM)

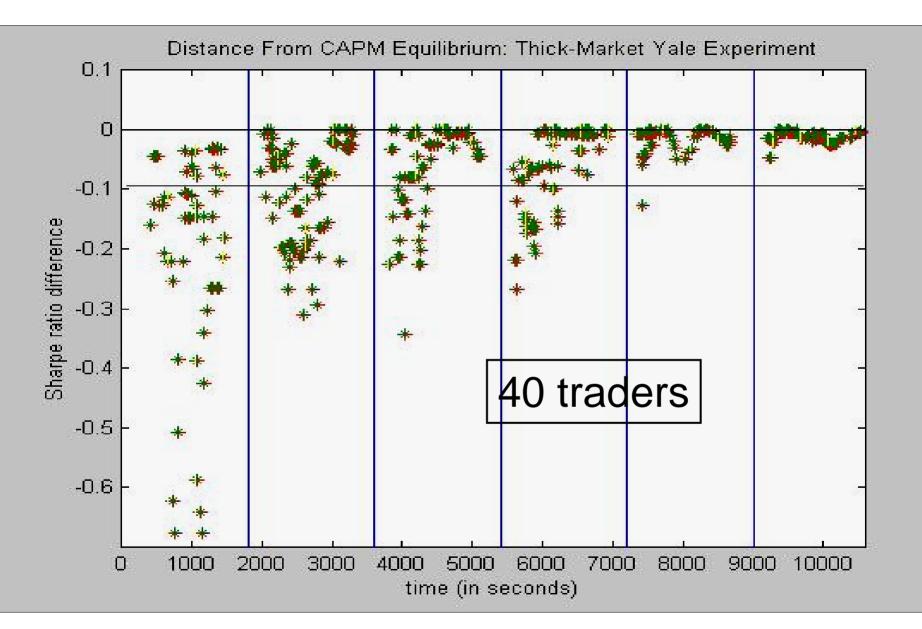
- What? 136 different credits
 - Regulators imposed <u>yearly</u> caps on NOx and SOx
 - 2x17 different "securities" (1994-2010)
 - Created 2 wind zones
 - Vs 37 which would have meant 1258 "securities"
 - Created 2 overlapping cycles
 - The economists' suggestion to reduce volatility
- Who? Anyone

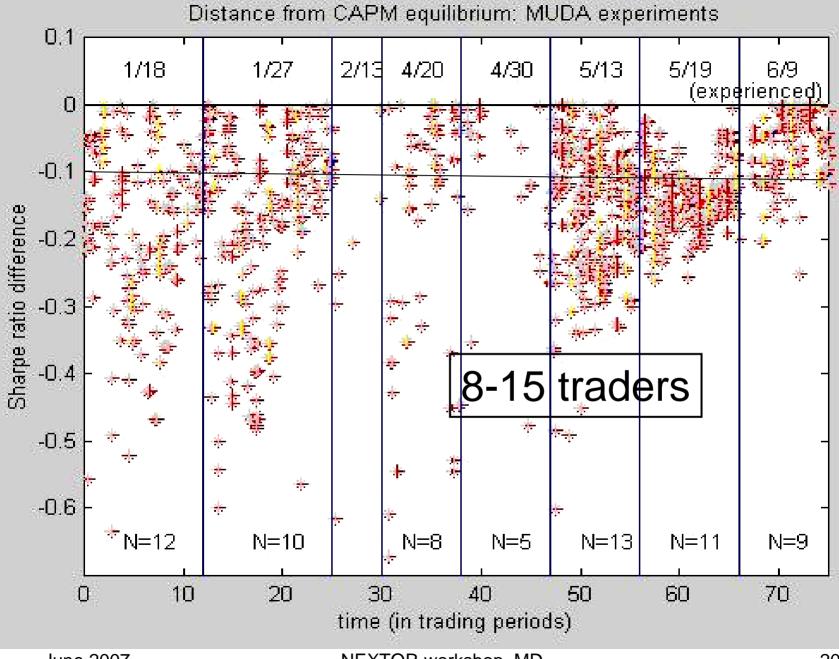
Example - Emissions trading for SCAQMD (RECLAIM)

- Market design? None. Left to private sector
 - Initially few trades
 - Few bi-lateral matches
 - Brokers taking 40% on each side
 - AQMD bulletin board not used
- Firms asked for and got a privately funded package bid call market (included futures)
 - Fees reduced to 3% on each side
 - Trades \$10 million/ month
 - Processed in one call each month
 - Prices around \$2-5/lb
 - Quantities around 2-5 million

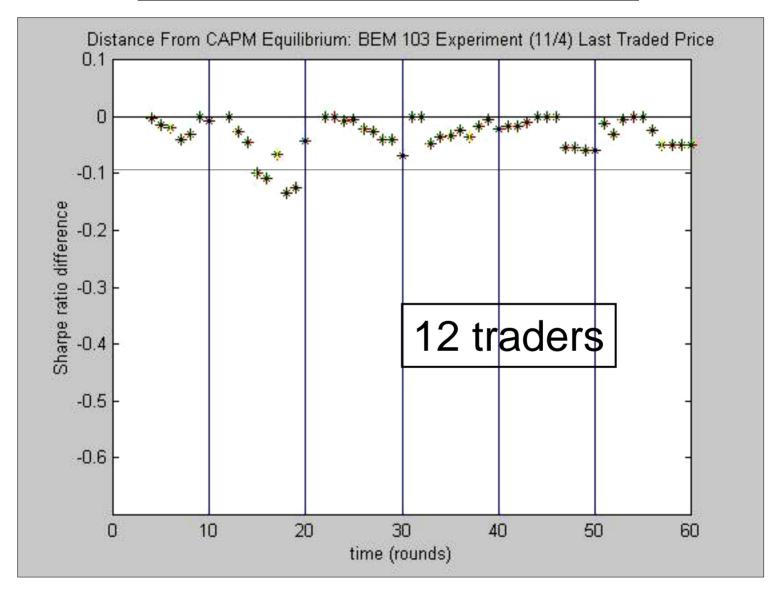
Example - Emissions trading for SCAQMD (RECLAIM)

- Reasonably successful at first
 - Accomplished a 50% reduction in emissions in a very few years
 - Prices indicated regulators really hadn't penetrated the available abatement technologies
- Three problems
 - Initial allocations: grandfathered generously
 - California electricity crisis
 - Fraudulent market operator


Example - Stock Markets


Setting

- 2 securities and cash
- Payoff known, different across 3 possible states
- Endowments like 5 of A, 4 of B, \$400 cash
 - Can differ across traders
- Let them trade, then draw state, then pay \$, then restart

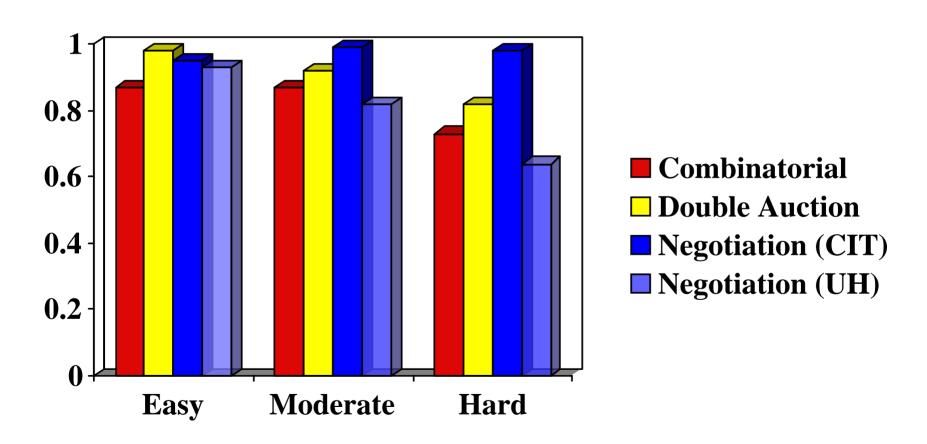

Mechanisms

- Double Auction
- Package Bid Call Market

What a PBCM can do to a thin market!

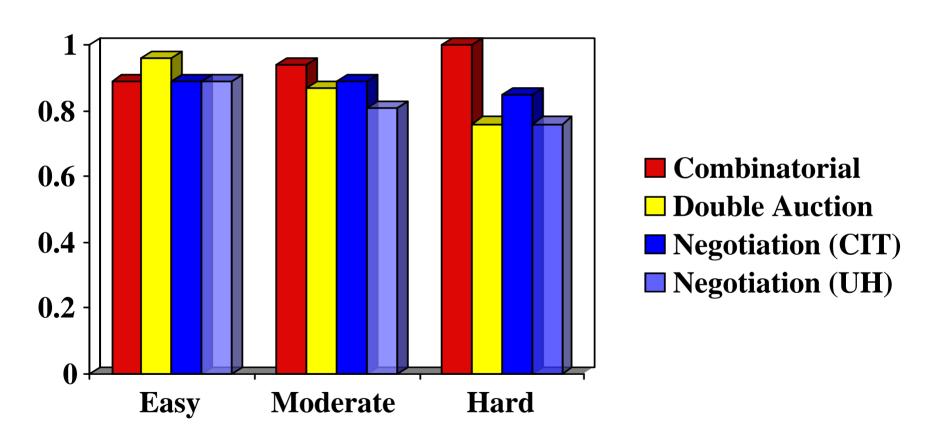
Example - Land Reallocation

Setting


- Individuals initially hold land parcels dispersed in multiple locations.
- There is a cost associated with holding dispersed land. The cost increases with the distance between parcels.

Mechanisms

- Package Bid Call Market
- Double auction
- Direct negotiation


Efficiency Gains

Series 1 (simple: no exposure)

Efficiency Gains

Series 2 (Exposure)

