
Incorporating Stochastic Models and 
Stochastic Information Within Traffic Flow 

Management Systems

Speaker:

Avijit Mukherjee
University of Maryland, College Park



Outline

• Introduction
• Background on stochastic models for Ground Delay Programs

– Static vs. dynamic models

• Recent work on dynamic model for GDP planning
– Capacity scenarios and scenario tree
– Experimental results
– Application under CDM

• Extension to enroute capacity problem DFW corner post problem
– Graphically explain the decision making process
– Experimental results

• Concluding remarks
– Complexities associated with practical implementation
– Future research



Sources of Uncertainty in Traffic Flow 
Management

• Demand (uncertain departure/arrival times)

• Capacity (forecast uncertainty)

• Control actions traffic managers may take

• Effects of coordination and timing of inter-related 
activities



Mitigating Uncertainty

• Reduce uncertainty by improving information quality.

• Create plans that “hedge against” multiple possible future 
outcomes.

• Create flexible systems that can dynamically react to 
changing conditions.



NEXTOR Research on Uncertainty in ATM

• Uncertainty in airport capacity
– Richetta and Odoni (1993, and 1994)
– Ball et al. (1999, 2003)
– Wilson (2002)
– Inniss and Ball (2001)
– Mukherjee and Hansen (2003)
– Liu et al. (2005)

• Demand uncertainty
– Vossen et al (2002)
– Willemain (2002)

• Enroute airspace capacity
– Nilim et al. (2002, 2004)
– Mukherjee and Hansen (2004)



Research on Stochastic Ground Holding 
Problem

• Static Stochastic Optimization Models
– Richetta and Odoni (1993) 
– Ball et al.(2003)
– Considers multiple scenarios of airport capacity profile along with 

their probability of occurrence
– Interesting properties of the IP formulation
– Can be applied repeatedly “partially” dynamic



Research on Stochastic Ground Holding 
Problem

• (Partially) Dynamic Stochastic Optimization Model: 
Richetta and Odoni (1994)
– Plans GDP in stages utilizes updated information on capacity
– Unable to revise ground delays once they are assigned, even if the 

flight hasn’t departed. However, this increases predictability of 
flight departure times.

• Dynamic Stochastic Optimization Model: Mukherjee and 
Hansen (2003)
– Capacity scenarios and scenario tree
– Utilizes updated information on capacity to revise ground delays of 

flights
– Can incorporate non-linear measures of ground delay



Scenarios and Scenario Tree
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Scenario “Tree” Doesn’t Grow

• Can be constructed based 
on probabilistic weather 
forecasts

• Can be obtained by 
performing statistical 
modeling of historical 
data on actual airport 
capacity (Liu et al., 2005)



Illustration of the Decision Making Process
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One flight scheduled to depart during first time period and arrive by end of 
2nd time period

If the flight is released at its scheduled time, it will arrive during the 2nd time 
period under both scenarios 1 and 2, and hence face airborne delay of one 
time period if scenario 2 occurs

If the flight is delayed by 1 time period, then it can be released under scenario 1 
at beginning of time period 2Otherwise it may be delayed further and released at time period 3 if 
scenario 2 occurs

Decisions made during 1st time period has to be same under both scenarios, 
because none of them can be distinguished at that time

In the Static Model, decisions are made during the 1st time periods, and not 
revised later



Experimental Results

• Applied to Dallas Fort Worth Intl. Airport (DFW)

• 351 flights

• Six capacity scenarios

• Four cases of varied model parameters

• Results compared with that from existing stochastic models (Ball
et al 2003, Richetta-Odoni, 1994)



Scenarios, Scenario Tree, and Cost Ratio
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Results

• Due to low cost ratio, 
airborne delays are faced 
in all models

• Dynamic Model
– Less total expected cost
– Ground delays more 

severe
– Less airborne delays

• Delay reduction 
compared to Static 
Model
– 10% in Dynamic Model
– 2% in Richetta-Odoni
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Application in CDM

• Dynamic substitution model that can be used by individual 
airlines to perform scenario-contingent substitutions
– Airlines cannot exceed the number of slots (during any hour) 

assigned to them in the initial stage (by the GH model)
– While making substitutions, airlines must not violate the coupling 

constraints that account for limited information on airport capacity 
in future time periods

• Dynamic compression model that can be used by the FAA
– An optimization model that works like the Compression Algorithm 

currently used by the FAA
– Vacant slots (due to cancellations) are utilized by making 

substitutions, and priority is given to canceling airline
– No flight is assigned a later slot than it currently owns 

Everyone is better off



Intra-Airline Substitution Benefits
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Benefits from Compression
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Enroute Airspace Capacity Problem



Model Formulation

• Input:
– Scheduled demand
– Capacity scenarios and 

scenario tree
– Set of enroute fixes where 

rerouting can occur and the 
available routes

• Main Decision Variables
– Planned arrivals at enroute

fixes where flights may be 
rerouted

– Cumulative count of flights 
inbound via available routes



Delay Calculations
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Capacity Scenarios

Airport: 
DFW

Arrival Fixes: 
BYP, CQY
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Experimental Case

• All scenarios equally likely
• Cost ratio 1:3

Results
• Rerouting results in additional flight 

time
• Overall delay cost in dynamic model 

9% less than static model
• Ground delay in Dynamic RR model 

30% less than Static model
• Loss due to imperfect information:

– 13% less in dynamic model
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Summary

• Mitigating uncertainty
– Improve the quality of information
– Hedge against possible outcomes

• Need to incorporate decision support models that address 
uncertainty in ATM
– Compatibility with Collaborative Decision Making is a necessary 

criteria
– Models/algorithms needs to be simple and transparent in order to

be implemented in practice

• Dynamically adjusting plans in response to changing 
conditions  and updated information is key to making the 
system more efficient



Work in Progress

• Develop realistic scenarios and scenario trees from past 
data
– Cluster analysis of airport capacity profiles
– Challenges in practical implementation: Identifying branching

• How to incorporate weather forecasts providing new 
capacities and probability of occurrence?
– Compare the performance of dynamic model with static model 

applied repeatedly



Questions?
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Decision Variables
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Objective Function
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Dynamic Substitution Model
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Airline-specific objective function:

Key Constraints:
The number of planned arrivals of an airline cannot exceed the number of 
slots assigned to the airline from the initial assignment (dynamic GH model)
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Dynamic Compression Model

( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−×+×= ∑ ∑∑∑

∈

+

=
−

∈Θ∈ aFf

T

fArrt
tftff

Aa
a XXArrtcanPz

1
1,,)()1(}{min ξξ

ξ
ξ

Objective Function

Key Constraints

No flight can be assigned a later arrival slot under any scenario, 
than what it owns after airline substitutions
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Constraints Continued

Scenario-specific airport capacity constraints
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Amount of scenario-specific airborne holding during any time 
period must not exceed the corresponding values from initial 
assignment

Θ∈Γ∈∀≤ ξξξ ,;ˆ tWW tt

Coupling constraints

iiii
i
k

i
iNS

tf

i
kS
tf

iS
tf toNStGfYYY µ≤≤≥Ω∈Γ∈∈∀====  and 2:,,;...... ,,

1
,


	Incorporating Stochastic Models and Stochastic Information Within Traffic Flow Management Systems
	Outline
	Sources of Uncertainty in Traffic Flow Management
	Mitigating Uncertainty
	NEXTOR Research on Uncertainty in ATM
	Research on Stochastic Ground Holding Problem
	Research on Stochastic Ground Holding Problem
	Scenarios and Scenario Tree
	Scenario “Tree” Doesn’t Grow
	Illustration of the Decision Making Process
	Experimental Results
	Scenarios, Scenario Tree, and Cost Ratio
	Results
	Application in CDM
	Intra-Airline Substitution Benefits
	Benefits from Compression
	Enroute Airspace Capacity Problem
	Model Formulation
	Delay Calculations
	Capacity Scenarios
	Experimental Case
	Summary
	Work in Progress
	Questions?
	Backup Slides
	Dynamic Substitution Model
	Dynamic Compression Model
	Constraints Continued

