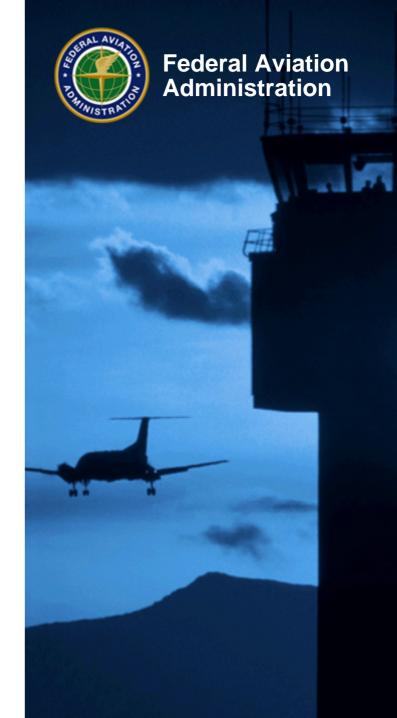
Airspace Systems Management in Transition


Presented to: 2nd National Airspace

System Infrastructure

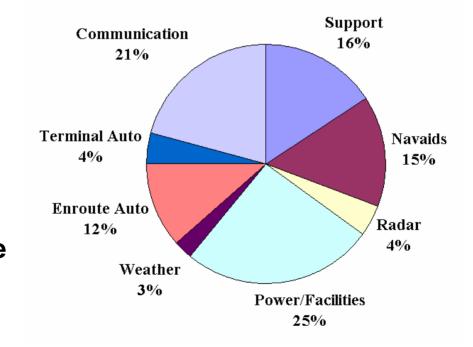
Management Conference

By: Jim Pritchard

Date: June 13, 2006

Technical Operations Workload

- Budget: Over \$1.86 Billion annually
- 6100 System Specialists


Over 84000 pieces of Equipment requiring

staffing

Personnel

Workload

By System Type

Maintenance and Management Philosophy

In Tech Ops, our primary maintenance goal is:

> to provide expected levels of service availability with minimal equipment related delays at an acceptable cost to the customer

ATO Management Philosophy supports this goal by:

- > Focusing on our core functions
- Establishing customer priorities
- Helping us define the cost of doing business
- Utilizing maintenance approaches and operational processes that optimize productivity and efficiency
- Defining and reporting metrics that are relevant to ATO goals and today's NAS environment

2005 Technical Operations Concept of Operations Organization & Process Improvement

- Maintenance Philosophy
 - ➤ New Restoration Order Restoration based on criticality, redundancy, risk analysis, value based, customer need.
- Reliability Centered Maintenance
- Workforce Structure 3 Area Offices, no deputies, consolidation of common functions
- Control Centers
- System & SubSystem Certification
- Employee Credentialing and Proficiency
- Remote Monitoring and Control
- Metrics

Reliability-Centered Maintenance (RCM)

An analytical process used to determine appropriate failure management strategies to ensure safe and cost-effective operations of a physical asset in a specific operating environment.

Failure Management strategies

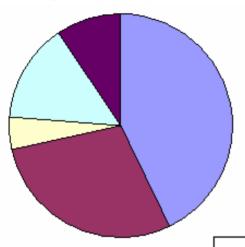
- -Preventive Maintenance (PM) (Clock Based)
- -Predictive Testing and Inspection (Condition Based)
- -Repair (Run to Failure)
- -Proactive Maintenance techniques

Reliability-Centered Maintenance (RCM)

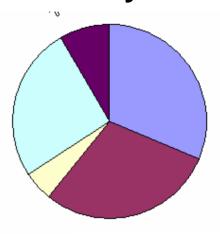
- Goal of RCM
 - Avoid or reduce failure CONSEQUENCES
 - Not necessarily to avoid failures
- Failure Consequences are the effects of failure on:
 - Personal and Equipment Safety
 - Operations
 - Economics
 - Environmental Health/Compliance

RCM in a Nut Shell

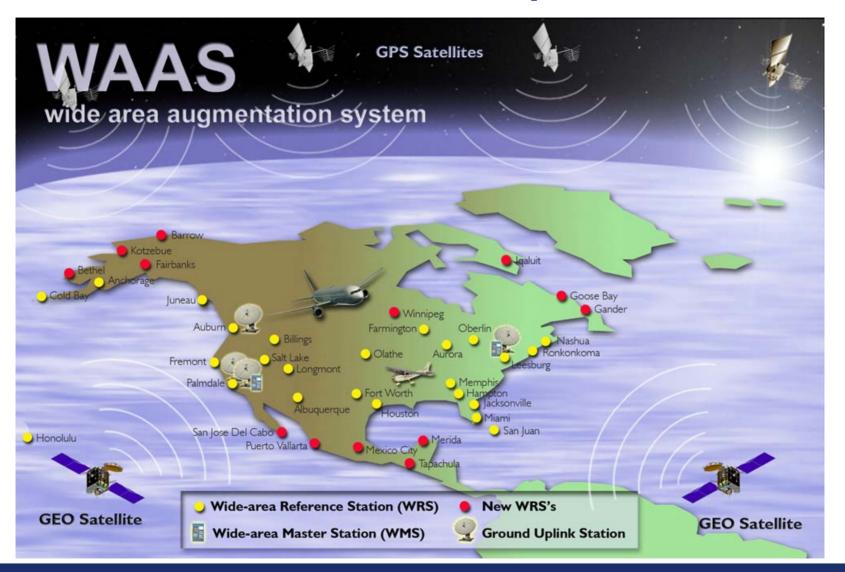
- In summary, RCM asks:
 - ✓ What does an item do?
 - ✓ How does it do it?
 - ✓ How does it fail?
 - ✓ What happens when it fails?
 - ✓ Can the failure be prevented or mitigated?
 - ✓ Is there value in preventing or mitigating the failure?
 - ✓ Does in-service data indicate changes or improvement are needed?
- Safety, operations, and economic impacts are put into balance


System Changes

- Increased Engineering Design Complexity
 - Increased National OPS Engineering Staffing
 - Increased effort required for system enhancements
- Increased Maintenance Complexity
 - Additional Field Support required by National OPS Engineering
- Increased Maintenance Tasks performed by centralized engineering staff
 - Optimizations, site adaptations, modification
- System Performance monitored centrally
- Architecture Interdependence
 - Increased coordination for maintenance & enhancement
- Increased Communication Requirements
- Reliability must be addressed during development
- 'Right Sizing' the NAS is needed for true cost avoidance



Total Cost of Ownership



Newer System

- Maintenance Workforce
- **Logistics Support**
- Training
- National OPS Engineering
- OCC,NOCC,Area, HQ Support

Architecture Interdependence

ATO Home | VOICE | FAA Intercom | FAA Internet |

http://nas.amc.faa.gov/home/index.jsp https://asoatotw1.faa.gov/atow-awa-technical-operations www.ato.faa.gov