

VIRTUAL AIRSPACE MODELING AND SIMULATION PROJECT

A Highly Automated Integrated Operational Concept for the Future NAS

Harry N. Swenson, Robert K.Fong and Michael B. Downs NASA Ames Research Center

NEXTOR NAS System Performance Workshop March 17, 2006

- Project Goals and Objectives
- Technical Approach
- Operational Concepts (examples)
- Evaluation Framework
- Blended Operational Concepts
- Airspace Concept Evaluation System (ACES)
- Example Results from Concept Analysis using ACES
 - Individual Concept Based
 - Blended System-Wide Concept
- Summary

Goal and Objectives

The Goal of the VAMS Project is to identify and assess capabilities that lead to a significant increase in the capacity of the National Airspace System, while maintaining safety and affordability.

The VAMS Objectives and Deliverables are:

- 1. To define and evaluate operational concepts
- 2. To generate enabling technology roadmaps
- 3. To establish the capability to assess these concepts

Technical Approach

Operational Concepts

Advanced Airspace Concept System Architecture

Multiple Conflicts in High Density Airspace

- Must resolve "secondary" conflicts (two kinds)
 - Conflicts that occur shortly after the first (primary) conflict
 - New conflicts that arise in a candidate trial resolution

Concept PTP: Massive Point-to-Point and On-Demand Air Transportation - Sensis Technologies

Framework for Scenario & Metrics Development

Simulations

Empiric Analysis

- Number of traffic events (takeoffs, sector crossings, landings, etc.)
- Number of communication events (requests, clearances, directives, etc.)
- Throughput (traffic volume)
- Delay
- Safety incidents (proximity to minimum separation, incursions, encroachments, etc.)
- Elapsed flight times
- Fuel burn
- Capital investments
- Personnel workloads
- Etc.

•Average aircraft flight time per air route

evaluation

metrics

Stakeholder Viewpoints

(questions to be answered)

- Average aircraft payload per flight mile
- Operational cost per passenger mile
- Average taxi time from pushback to wheels up during peak traffic periods per specific airports or taxi paths within airports
- Average voice channel occupancy time per departure from pushback to take off
- Average Airport arrival rate during peak periods
- Rate of arrivals per controller hour per airport
- Aircraft (or engine, or other component) maintenance costs per flight mile
- Etc.

* a defined city pair air route

Capacity

- Total Flights Flown
- Total commercial flights per day
- Total passenger trips
- Total Passenger revenue miles for metro pairs
- Average airport arrival rates
- Average airport departure rates
- Average block time
- Passenger arrivals / departures per hour
- Distance per OD
- Comparison of average number of flights to average delay
- Total System Delays by category
- Available seat miles
- Time required for surface movement per flight
- Ratio of VMC to IMC capacity
- Comparison of AAR and ADR with peak throughput

Throughput

- Airport IMC and VMC throughput compared with Airport IMC and VMC throughput Index (AITI, AVTI)
- Peak airport Throughput
- Peak Sector or Center throughput
- Peak En route Throughput

Efficiency

- Total aircraft travel time for (constant demand)
- Total aircraft miles flown
- Average Flight time per origin/destination pair
- Fuel burn index
- Average of aircraft over an arrival fix per hour during peak periods
- Surface traffic efficiency
- Average number of gate arrival and departure times

Predictability

- Number of flights more than 15 minutes late
- Average and standard Deviation of the difference between actual and planned flight time
- Number of passengers more than 15 minutes late arriving
- Average departure delay
- Average number of minutes late per flight

Human Factors

- Average number of aircraft controlled per controller position
- Estimated workload of controllers

Safety

• Point of closest approach

VAMS System-Wide Concept Blending

Increased Airborne Throughput Utilizing Automated Separation Assurance

Increased Capacity through Dynamic Traffic Management Techniques

3/17/06

Virtual Airspace Modeling & Simulation – NAS Performance Workshop

Reduced Aircraft Separation in All-Weather Conditions thru Advanced Ground and Air Technologies

Allocation of Tasks between Human and Automation

Humans:

- Direction and Management of Automation
- Decisionmaking Handling of Unequipped Aircraft
- Strategic Direction of Response to Anomalous Conditions

Automation:

- Creation, validation, Clearance Delivery, and Conformance Monitoring of 4D Trajectories
- Tactical Handling of Anomalous Conditions
- Automated Failure Backup

The Airspace Concept Evaluation System (ACES) Modeling Toolbox

National Traffic Management

17/06

Simul

Virtual Airspace Modeling &

Fast-time, nationwide gate-to-gate simulation of ATM-FD-AOC operations

 Full flight schedule with flight plans, 4-D gridded winds, gate-togate operations

Regional Traffic Management

-

Thousands of participating agents:

- National
- Regional
- Local
- Airports
- Aircraft
- Airlines

High Fidelity 4-DOF Trajectory Model

Based on laws of physics and aerodynamics

20

100s

100s

10s

10,000s

- Realistic pilot-based control laws
- Includes elliptic-Earth trajectory propagation
- Contains modeling for aircraft/pilot variability

Local Approach and Departure Traffic Management

Airport and Surface Traffic Management

17

Performance Comparison of Current System and AAC (Simulation of Cleveland Center Airspace)

• Using Diversion of 34 CONUS OEP Apt Demand to PTP Auxiliary Apts

 $PTP Increase_{\text{Region}} = \frac{\sum All Airport Capacity_{\text{Region}}}{\sum OEP Airport Capacity_{\text{Region}}}$

Summary

- VAMS has developed and analyzed a wide range of innovative operational concepts that provide significant increases in capacity for the National Airspace System (NAS).
- VAMS has created a non-real time, system-wide analytical simulation and modeling tool set that has explored domain specific and systemic performance characteristics of the VAMS innovative concepts.
- VAMS has developed and applied an blending and synthesis process for the integration of Operational Concept Elements into a capacity increasing System-Wide Operational Concept.
- VAMS is currently documenting the System-Wide Operational concept along with the synthesis and analysis process including research issues encountered. (Just entered peer review.)

Backup Slides

- ACES Build 4.0.2_NASA
- Weather days
 - Perfect all facilities in VFR
 - Nominal actual 5/17/02 weather
- Sector capacities See Below
- Airport capacities See Below
- CD&R Off
- Delay Maneuvers Off
- Arrival Fix Spacing Off
- Arrival Fix TRACON Delay Off
- Departure Fix TRACON Delay Off
- AOC Operation Off
- Tail Tracking Off
- Airport mode Nodal
- En-route weather modeling

PSCA - Trial Matrix

System	Demand							
	Current Day	OEP 2015	Future H/S (+50%)	Future H/S +PTP (+50%)	Future H/S (+100%)	Future H/S + PTP (+100%)		
Current Day	X							
OEP 2015		X	#	#	#	#		
VAMS SWC		#	X	X	X	X		

Legend:

Black - Need to run

Red - Run if 50% is good

- they are needed for a direct comparison, considered optional for now

Other Notes:

- Current x Current run could be used to characterize/establish acceptable delay
- OEP2015 x OEP2015 could also be used to characterize/establish acceptable delay
- Need to run matrix for all Wx days chosen (perfect and nominal)
- Is OEP 2015 is approximately 1.5X?
- First runs performed would be 1) future H/S+PTP (50%) X VAMS System-wide Concept, perfect weather

PSCA - Operating Conditions

- A. Benchmark 2004 Report: Current Day Airport Operating Capacities
- B. FAA Advisory Circular 150/5060-5 Airport Capacity and Delay
- C. ASPM Airport Operating Capacities
- D. Adaptation Controlled Environment System (ACES)
- E. Koenke and Abramson White Paper (Aug 2005)
- F. VAMS Blended Concept Descriptions

Run	Demand	Capacity Definition (see legend above)	Condition	Implementation	
Current Day No Weather	Current Day	A,B,C,D	VFR	VFR at all airports	
Current Day Moderate Weather	Current Day	A,B,C,D	VFR/IFR	Airport State Files Sector MAP Scenario File	
OEP No Weather	OEP 2015	A,B,C,D,E	VFR	VFR at all airports	
OEP Moderate Weather	OEP 2015	A,B,C,D,E	VFR/IFR	Airport State Files Sector MAP Scenario	
Future 1.5x No Weather	Future 2020	A,B,C,D,E	VFR	VFR at all airports	
Future 1.5x Moderate Weather	Future 2020	A,B,C,D,E,F	VFR/IFR	Airport State Files Sector MAP Scenario	
Future PTP 1.5x No Weather	Future 2020	A,B,C,D,E,F	VFR	VFR at all airports	
Future PTP 1.5x Moderate Weather	Future 2020	A,B,C,D,E,F	VFR/IFR	Airport State Files Sector MAP Scenario	

	Scenario Description							
Metric	Current Day		OEP		Future 1.5		PTP 1.5	
	No Wx	Wx	No Wx	Wx	No Wx	Wx	No Wx	Wx
Flights in NAS	43016	41927	56004	54102	67341	64903	69744	67651
Domestic flights	40394	39319	52543	50679	63047	60656	65441	63359
International flights	2622	2608	3461	3423	4294	4247	4303	4292
Operations at Benchmark airport	28919	28044	38758	37233	47728	45780	47174	45602
% operations at benchmark	67.2%	66.8%	69.2%	68.8%	70.8%	70.5%	67.6%	67.4%

PSCA – Traffic Mix

Example Results – Flights, RPM, and

Major Air Transportation System Performance Dimensions

Human Performance Evaluation Capability

- Provide for high-fidelity evaluation of human performance and/or roles and responsibilities issues of new operational concepts
- Integrate models, simulation labs and facilities into a distributed network
- Leverage existing facilities and models
- Reconfigurable to meet different concept requirements

• Facility Integration Tools

- Bridges connect components with different implementations of an HLA communications protocol to VAST-RT
- Portals connect components with non-HLA communications protocols to VAST-RT
- Ownership Handoff Manager allows control of an aircraft to pass to different facilities as the aircraft moves through space

Distributed Simulation Tools

- Data collection
- Centralized simulation clock
- A generic component to supply data unavailable from some facilities, but needed by other components or facilities

• Other Research Tools

- Displays and Decision Support Tools to support AOC participation
- Interfaces to non-ATM research tools
- Displays for simulation monitoring and observer participation

September 2005

ACES Simulation of AAC Automated Resolution

- Includes realistic models of aircraft performance, guidance functions and 4D trajectories
- Monte Carlo like simulation environment
 - Each 24 hour long ACES run includes thousands of conflict encounters
 - Provides unbiased and statistically significant results
- Results for Cleveland Center Traffic
 - Investigated range of traffic densities and res. parameters
 - 1X, 2X, 3X traffic density
 - Time to first loss range for generating resolutions: 1-8 minutes
 - Conflict free range for resolutions: 12 minutes
 - All types of conflicts, including arrival vs. arrival
 - Airspace and traffic above 10,000 ft
 - Dominant conflicts
 - 60 % non cruise or mixed cruise non- cruise
 - Resolution strategy
 - Comparison of performance for vertical and horizontal resolution priority

ACES Atlanta Security Event Analysis

Average Arrival Delay

* JPDO Evaluation and Analysis Division