

Modeling delays and cancellations for collaborative strategic planning at single airports

Avijit Mukherjee¹, David Lovell^{1,2}, Michael Ball^{1,3}, Andrew Churchill², Amedeo Odoni^{4,5}

¹ Institute for Systems Research
² Department of Civil and Environmental Engineering
³ R.H. Smith School of Business
University of Maryland, College Park

 ⁴ Department of Aeronautics and Astronautics
⁵ Department of Civil and Environmental Engineering Massachusetts Institute of Technology

National Airspace System Performance Workshop, Asilomar Conference Center, Pacific Grove, CA, March 2006

I. Strategic planning context

II. Delay model validation

- II.1. DELAYS model
- II.2. Data filtering
- II.3. Experimental design
- II.4. Profile matching
- II.5. Hourly profile plots

IV. Conclusions

III. Cancellation model

- III.1. Network flow model
- III.2. Daily plots
- III.3. Hourly profile plots

I. Strategic planning context

- Multiple carriers
 - Input data consist of scheduled flights only
 - Broker required to conserve confidentiality and prevent collusion
 - Broker produces estimates of delays and cancellations
- Single airport
 - Historical norms reliable in the rest of the NAS
 - Limited up and downstream interaction effects
- Applications
 - Collaborative scheduling
 - Strategic simulations
 - Evaluation of market mechanisms for congestion mitigation

- Model the aircraft arrival process as a non-homogeneous Poisson process with Erlang-*r* service times (DELAYS[©] code, developed at MIT by Koopman, Kivestu, Malone)
- How DELAYS works:
 - It is <u>not</u> a simulation
 - Governing differential equations of the stochastic process are generated
 - An efficient approximation scheme is then used to evaluate them
- Stochastic model produces pdf's for relevant outputs
- Can only capture congestion-related delays at an arrival airport
- We would use the model conditionally on each of several capacity scenarios relevant for the airport in question
- For validation purposes, we are trying to compare actual arrival delay information from ASPM to predicted delays

II.2. Data filtering

Aircraft XYZ

Departs LAX 60 minutes after scheduled

Arrives ORD 60 minutes after scheduled

Extra turn-around time of 30 minutes required

Departs ORD 90 minutes after scheduled

Arrives MCO 120 minutes after scheduled

Reported delay for ORD-MCO segment: 120 minutes, includes 90 minutes of propagated delay *Real* delay for ORD-MCO segment: 30 minutes

II.3. Experimental design

- Airports:
 - Chicago O'Hare (ORD)
 - Atlanta Hartsfield (ATL)
- Time periods:
 - Monthly aggregation
 - January through December, 2004
- Inputs:
 - Demands = scheduled demands cancellations
 - Capacities = AARs unscheduled demand

II.4. Profile matching

$$\min\left\{f = \sum_{t=1}^{T} (O_t - P_t - d)^2\right\}$$

Example data: ATL, February 2004

Predicted profile shifted up by 5.9 minutes, residuals of 100.4

Profile shape: primarily congestion impacts

Profile magnitude: contains ambient causes

ATL, January 2004 Shift = 2.9 Residuals = 187.9

ATL, February 2004 Shift = 5.9 Residuals = 100.4

ATL, March 2004 Shift = 2.5 Residuals = 50.3

ATL, April 2004 Shift = 2.6 Residuals = 53.5

ATL, May 2004 Shift = 6.4 Residuals = 95.4

ATL, June 2004 Shift = 10.2Residuals = 546.8

ATL, July 2004 Shift = 5.6 Residuals = 129.1

ATL, August 2004 Shift = 3.8 Residuals = 78.6

ATL, September 2004 Shift = 7.3 Residuals = 220.8

ATL, October 2004 Shift = 1.6Residuals = 150.9

ATL, November 2004 Shift = 5.0 Residuals = 25.3

ATL, December 2004 Shift = 7.0 Residuals = 50.5

NEXTO

ORD, January 2004 Shift = 15.3 Residuals = 243.9

ORD, February 2004 Shift = 3.3 Residuals = 255.0

ORD, March 2004 Shift = 1.6 Residuals = 364.9

ORD, April 2004 Shift = -2.2 Residuals = 376.4

ORD, May 2004 Shift = 11.5 Residuals = 483.0

ORD, June 2004 Shift = 5.9 Residuals = 81.0

ORD, July 2004 Shift = 6.9 Residuals = 142.7

ORD, August 2004 Shift = 4.0Residuals = 280.4

ORD, September 2004 Shift = 1.0 Residuals = 209.6

ORD, October 2004 Shift = 1.3 Residuals = 275.7

ORD, November 2004 Shift = 4.2 Residuals = 193.7

ORD, December 2004 Shift = 6.5 Residuals = 103.6

- Penalties in the objective function for delay arcs and for cancellations
- A maximum delay is imposed exogenously
- Calibration via known schedules, AARs, and cancellations from ASPM data

III.1. Network flow model

III.1. Model structure

• Minimum cost network flow problem

Decision variables:

- X_t = Flights accepted for landing
- Y_t = Delayed flights
- Z_t = Landed flights
- $Q_{t,i}$ = Flights cancelled at cost λ_i

Arc capacities:

- D_t = Scheduled demand
- W_t = Transfer capacity
- C_t = Landing capacity
- P_i = Cancellations at cost λ_i

Constants:

- U = Maximum number of time slices a flight can be delayed
- ξ = Delay cost for one time slice, taken to be 1
- λ_i = Cancellation costs using cancellation arc *i*, relative to ξ

Notes:

- Have *N* cancellation arcs for each *t*
- No demand after time T
- No cancellation arcs after time T

ATL2004, U=6, [9 18 36] unfiltered y = 0.782 + 1.000x $R^2 = 0.497$

ATL2004, U=2, [15 30 60] Filtered (>25th %ile DQ) y = 0.698 + 1.000x $R^2 = 0.561$

ORD2004, U=8, [18 36 72] unfiltered y = 1.53 + 0.998x $R^2 = 0.678$

III.2. Daily plots

ORD2004, U=6, [18 36 72] Filtered (>25th %ile DQ) y = 1.02 + 1.005xR² = 0.569

ATL2004, U=6, [9 18 36] July 25, 2004 Predicted = 24 Observed = 21 Shift = -0.0312 Residuals = 84.9063

ATL2004, U=6, [9 18 36] July 25, 2004 Predicted = 24 Observed = 21 Shift = -0.0312 Residuals = 84.9063

ATL2004, U=2, [15 30 60] July 25, 2004 Predicted = 18 Observed = 21 Shift = 0.0313 Residuals = 76.9063

ATL2004, U=2, [15 30 60] July 25, 2004 Predicted = 18 Observed = 21 Shift = 0.0313 Residuals = 76.9063

ATL2004, U=6, [9 18 36] Sept 7, 2004 Predicted = 106 Observed = 97 Shift = -0.0938 Residuals = 216.1563

ATL2004, U=6, [9 18 36] Sept 7, 2004 Predicted = 106 Observed = 97 Shift = -0.0938 Residuals = 216.1563

ATL2004, U=2, [15 30 60] Sept 7, 2004 Predicted = 118 Observed = 97 Shift = -0.2188 Residuals = 272.4063

ATL2004, U=2, [15 30 60] Sept 7, 2004 Predicted = 118 Observed = 97 Shift = -0.2188 Residuals = 272.4063

ATL2004, U=6, [9 18 36] Sept 15, 2004 Predicted = 106 Observed = 93 Shift = -0.13542 Residuals = 227.2396

ATL2004, U=6, [9 18 36] Sept 15, 2004 Predicted = 106 Observed = 93 Shift = -0.13542 Residuals = 227.2396

ATL2004, U=2, [15 30 60] Sept 15, 2004 Predicted = 114 Observed = 93 Shift = -0.2188 Residuals = 176.4063

ATL2004, U=2, [15 30 60] Sept 15, 2004 Predicted = 114 Observed = 93 Shift = -0.2188 Residuals = 176.4063

- Simple and expedient models
- Useful for iterative strategic planning exercises with multiple airlines:
 - Low levels of airline-specific competitive and/or proprietary information
 - Fast run times (on the order of seconds) to facilitate multiple scenarios and quick response
- Useful for setting preliminary values of parameters for new resource allocation regimes without a strong economic history
- The best predictions of delays and cancellations with minimal inputs that we are aware of