

Models for Estimating Monthly Delays and Cancellations in the NAS

Avijit Mukherjee Michael Ball Bargava Subramanian

University of Maryland

Introduction

- Objectives
 - Develop a metric that indicates the level of congestion faced by a each operation (arrivals/departures) at an airport.
 - Estimate various percentiles of the distribution of the congestion metric across all operations in the NAS.
 - Model NAS average flight delay and cancellation probability as a function of the congestion level (i.e. the percentiles of the distribution of the congestion metric).
- Application in NAS Strategy Simulator
 - Estimating flight delays and cancellation under various demand growth or capacity increase scenarios in the NAS
 - Estimating passenger delay

Measure of Congestion

The demand/capacity ratio is a good measure of congestion. Each operation at an airport faces a congestion level depending on the capacity and demand at the airport in a time window at which the operation takes place.

Х

ρ99

Estimating Rho at an Airport

- Input
 - Hourly scheduled demand
 - GA demand
 - VMC / IMC capacities
- Associate demand/capacity in an hour as the Rho value for each operation during that hour
- Estimate the monthly distribution (or percentiles) of Rho at an airport

NAS Rho Percentiles

- Estimate Rho50 (50th percentile) and Rho95 (95th percentile) for all airports
- NAS Rho50 and Rho95 are weighted average of corresponding airport Rho's
- Weights are proportional to the fraction of NAS operations at each airport

Impact of Rho50 on Delays and Cancellation

Impact of Rho95 on Delays and Cancellation

Estimating Flight Delays and Cancellation Probability

- Hourly scheduled demand and capacity at 35 major airports obtained from ASPM database
- Monthly load factor data obtained from Database Products Inc.
- Average flight delay and proportion of flights cancelled obtained from ASPM

Monthly Cancellation Model

Log (Load Factor * (1 - Rho50))

September 2001 considered outlier, hence excluded

Monthly Delay Model

Functional Relationships

Canc. Probability = $e^{-3.75} * [Loadfactor * (1 - Rho50)]^{-3.34}$

Average Delay = 38.62 * [Rho95 (1 – Canc. Prob.)] – 23.84

Predicted vs. Observed Delay in 2005

Applications

NAS Performance Models

Airport Categorization Based on Rho

Objective : To cluster airports using monthly Rho 50, Rho 95, Average Delays, Probability of Cancellation.

Method used : Clustering is carried out using K-Means clustering procedure. This is an iterative procedure wherein airports are assigned to various clusters so as to minimize the distance from the clusters' centroids.

Result : The airports can be divided into four categories :

Category 1 : Low Rho50, Low Delay, Low Cancellation probability

Category 2 : Rho50, Delay, Cancellation probability similar to NAS average

Category 3 : "Constrained" airport-set – delay similar to NAS average but cancellations increase beyond a particular Rho50.

Category 4 : High Rho, High Delay, High Cancellation Probability

Airport Categories

Airport Categories continued...

Airport Categories continued

Category	1 Category	2 <u>Catego</u>	ory 3 <u>Categor</u>	y 4
TPA	PIT	DEN	PHL	
МСО	MIA	IAD	BOS	
SLC	CLT	DFW	EWR	
BWI	FLL	DTW	ATL	
PDX	LAS	DCA	ORD	
	MDW	SFO	LGA	
	CVG	JFK		•
	SAN	LAX		
	РНХ		-	
	SEA			
	IAH			
	MSP			
	STL			

Application: Estimating Passenger Delay

P_miss = Prob{delay > layover time | delay > 15 minutes}

Flight Delay Distribution of Delayed Flights

Comparison of two methods

•Data calibrated over 48 months ranging from Jan'00 to Dec '04

•10 months used for validation – 5/00,10/00,7/01,4/02, 10/02, 12/03, 7/03, 3/04, 8/04,11/04

•Both the curves fit well.

•But Bi-weibull distribution is marginally better than bezier curve because the rate of descent initially(15-30 and 30-45 min) in bi-weibull matches more closely to the actual than bezier curve.

Jul '03 Delay : 11.62min Cnx: 1.3% 50 Actual Bi-weibull 40 % of flights del □ Spline 30 20 10 0 30-45 15 - 3045-60 60-75 75-90 9 time interval 105 - 120135-150

Work in Progress

- Introducing a metric (similar to Rho) for enroute congestion
- Evaluate the impact of demand growth at various airport categories on NAS Rho → Delays and Cancellation