Infrastructure Deterioration: Stochastic Duration Models and the Incorporation of Explanatory Variables

Rabi G. Mishalani The Ohio State University Department of Civil & Environmental Engineering & Geodetic Science

National Airspace System Infrastructure Management Conference The National Academies, Washington, DC September 9, 2005

Infrastructure Management

Deterioration

- Types of failure
 - physical
 - functional
 - economic
- Physical condition is inherently continuous
- Deterioration is a stochastic process influenced by
 - design attributes
 - usage (traffic loading)
 - environment
 - age
 - maintenance history

Deterioration (cont'd)

- Measured or assessed condition can be
 - continuous
 - discrete
- Discrete condition ratings
 - reduce the condition state space
 - render decision-making more manageable

Types of Data

- Field data of in-service facilities
 - rich variety of conditions are captured
 - effect of maintenance actions which depend on condition have to be addressed
- Laboratory data (e.g., accelerated testing)
 - less varied set of conditions are possible
 - controlled experiments

Deterioration Modeling

- Probabilistic discrete state models
 - state-based (discrete-time)
 - time-based
- Discrete-time state-based models
 - Markov chain
 - transition probabilities from one condition state to other states

Discrete-Time State-Based Deterioration Model

 t_1 t_2 t_3

Deterioration Modeling (cont'd)

- Time-based models
 - state duration
 - probability density function (pdf) of time spent in a condition state
- Can use one model to determine dependent variable of the other
- State-based models are predominantly used in decision-making

Transition Probability Estimation Literature

- Expected value method (Carnahan et al 1987, Jiang et al 1988)
 - minimizes distance between theoretical expected value of state and regression-based state prediction
 - does not capture the effect of explanatory variables
 - time segmentation to capture non-homogeneity is ad hoc
 - linear regression is inappropriate for discrete state data
- Ordered Probit method (Madanat, Mishalani, and Wan Ibrahim 1995)
 - estimate parameters of deterioration relationships
 - compute transition probabilities from such models
 - independent and identically distributed observed condition states assumption does not hold

Transition Probability Estimation Literature (cont'd)

- Time-based model (DeStefano & Grivas 1998)
 - motivated by need for state transition probabilities
 - does not capture the effect of explanatory variables
- Consequences
 - biased state transition probabilities
 - poor condition predictions
 - suboptimal maintenance decision making

Methodology

- Objectives
 - develop time-based model that captures effect of explanatory variables
 - derive a method to compute discrete-time state-based transition probabilities
- Recognize deterioration is a continuous stochastic process
- Δ = inspection period
- Observed condition states: 1, 1, ..., 1, 0, 0, ..., 0 (bivariate case)
- Observations depend on threshold defining the states

Continuous Deterioration Process

Condition

Methodology (cont'd)

- *t* = time since most recent rehabilitation or construction
- *T* = duration of a given state (state 1)
- Approach
 - estimate pdf of T, f(t), as a function of explanatory variables
 - compute transition probabilities based on f(t) and Δ

Hazard Rate Function

• $R(t, \Delta)$ = transition probability out of state 1 at time t

•
$$R(t,\Delta) = \operatorname{Prob}(t < T < t + \Delta | T > t) = \frac{F(t + \Delta) - F(t)}{S(t)}$$

F(t) = cumulative distribution function of TS(t) = 1 – F(t), survival function

• Hazard rate function $\lambda(t) = \lim_{\Delta \to 0} \frac{R(t, \Delta)}{\Delta} = \frac{f(t)}{S(t)}$

(instantaneous rate of transition out of current state after time t)

- interpretation of $\lambda(t)$
 - constant \Rightarrow duration independence
 - decreasing \Rightarrow negative duration dependence
 - increasing \Rightarrow positive duration dependence

Model Specification

• *T* follows the Weibull pdf

 $\lambda(t) = p\lambda^{p}t^{p-1}$ (λ , p = parameters)

- If $0 , <math>\lambda(t)$ is decreasing (negative duration dependence) If p = 1, $\lambda(t) = \lambda$ is constant (duration independence) If p > 1, $\lambda(t)$ is increasing (positive duration dependence)
- Capturing the effect of explanatory variables

 $\lambda = e^{-\beta X}$

X = column vector of explanatory variables

 β = row vector of parameters

- Estimation of parameters β and p
 - Maximum Likelihood
 - effect of censoring in observing T is accounted for

Transition Probability Computation: Bivariate Case

• Probability of the transition from state 1 to state 0

$$P_{1,0} = R_1(t,\Delta) = 1 - \frac{\exp[-\lambda_1^{\rho_1}(t+\Delta)^{\rho_1}]}{\exp[-(\lambda_1 t)^{\rho_1}]}$$

• Probability of remaining in the same state 1

$$P_{1,1} = 1 - R_1(t,\Delta) = \frac{\exp[-\lambda_1^{\rho_1}(t+\Delta)^{\rho_1}]}{\exp[-(\lambda_1 t)^{\rho_1}]}$$

Empirical Analysis

- Indiana Bridge Inventory (IBI)—part of National Bridge Inventory (NBI)
- Reinforced concrete bridge deck observations
- FHWA condition ratings: 9 (best) to 0 (worst)
- 1974-1984
- Number of observations for state 8: 368 (71% censored)
- Number of observations for state 7: 1,092 (80% censored)

Parameter Estimates for State 8

Variable	Estimated parameter	t-statistic
Constant	2.13	9.44
Age	0.15	6.31
Region	- 0.84	- 7.06
Type2	0.38	3.09
HWClass1	- 0.64	- 2.89
HWClass3	- 0.55	- 3.62
HWClass5	- 0.57	- 3.36
WearSurf1	- 0.80	- 4.73
1/ <i>p</i>	0.52	12.01

Parameter Estimates for State 7

Variable	Estimated parameter	t–statistic
Constant	5.07	11.30
AvgADT	- 2.64×10 ⁻⁵	- 2.70
Region	- 0.83	- 5.57
HWClass1	- 1.02	- 3.87
HWClass3	- 1.30	- 5.15
HWClass5	- 1.14	- 4.57
WearSurf1	- 0.99	- 3.74
WearSurf2	- 1.15	- 4.23
1/ <i>p</i>	0.88	11.26

Summary

- Critiqued state-based model transition probability estimation methods
- Developed time-based stochastic duration model that takes into account the effects of causal (explanatory) variables
- Derived a methodology for computing discrete-time state-based transition probabilities from time-based duration models
- Demonstrated the methodology using bridge deck condition data
- Statistically tested for state-dependence and age-heterogeneity using the time-based models

Issues for Future Research

- Definition of discrete condition states
- Network of interdependent components
- Functional form of hazard rate function (monotonic vs. non-monotonic)
- Identification of pertinent explanatory variables

Transition Probability Computation: Multivariate Case

• Probability of remaining in the same state 2

$$P_{2,2} = 1 - R_2(t,\Delta) = \frac{\exp[-\lambda_2^{p_2}(t+\Delta)^{p_2}]}{\exp[-(\lambda_2 t)^{p_2}]}$$

• Probability of the transition from state 2 to state 1

$$P_{2,1} = \operatorname{Prob}(\operatorname{state} = 1 \text{ at time } \tau = t + \Delta | T_2 > t)$$

$$= \int_{t}^{t+\Delta} \operatorname{Prob}(\tau < T_2 < \tau + d\tau | T_2 > t) \cdot \operatorname{Prob}(T_1 > t + \Delta - \tau)$$

$$= \int_{t}^{t+\Delta} \frac{\lambda_2(\tau) \cdot S_2(\tau) \cdot S_1(t + \Delta - \tau)}{S_2(t)} d\tau$$

$$= p_2 \lambda_2^{p_2} \exp[(\lambda_2 t)^{p_2}] \int_{t}^{t+\Delta} \tau^{p_2 - 1} \exp[-(\lambda_2 t)^{p_2} - \lambda_1^{p_1}(t + \Delta - \tau)^{p_1}] d\tau$$

Transition from State 2 to State 1 State

Transition Probability Computation: Multivariate Case (cont'd)

• Probability of the transition from state 2 to state 0

 $P_{2,0} = 1 - P_{2,2} - P_{2,1} = R_2(t,\Delta) - P_{2,1}$