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Deterioration 
• Types of failure 

- physical 
- functional 
- economic 

• Physical condition is inherently continuous 
• Deterioration is a stochastic process influenced by 

- design attributes 
- usage (traffic loading) 
- environment 
- age 
- maintenance history 
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Deterioration ( cont’d ) 
• Measured or assessed condition can be 

- continuous 
- discrete 

• Discrete condition ratings 
- reduce the condition state space 
- render decision-making more manageable 
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Types of Data 
• Field data of in-service facilities 

- rich variety of conditions are captured 
- effect of maintenance actions which depend on condition have to be 

addressed 
• Laboratory data (e.g., accelerated testing) 

- less varied set of conditions are possible 
- controlled experiments 
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Deterioration Modeling 
• Probabilistic discrete state models 

- state-based (discrete-time) 
- time-based 

• Discrete-time state-based models 
- Markov chain 
- transition probabilities from one condition state to other states 
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Discrete-Time S tate-Based Deterioration Model 
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Deterioration Modeling ( cont’d ) 
• Time-based models 

- state duration 
- probability density function (pdf) of time spent in a condition state 

• Can use one model to determine dependent variable of the other 
• State-based models are predominantly used in decision-making 
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Transition Probability Es timation Literature 
• Expected value method (Carnahan et al 1987, Jiang et al 1988) 

- minimizes distance between theoretical expected value of state and 
regression-based state prediction 

- does not capture the effect of explanatory variables 
- time segmentation to capture non-homogeneity is ad hoc 
- linear regression is inappropriate for discrete state data 

• Ordered Probit method (Madanat, Mishalani, and Wan Ibrahim 1995) 
- estimate parameters of deterioration relationships 
- compute transition probabilities from such models 
- independent and identically distributed observed condition 

states assumption does not hold 
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Transition Probability Es timation Literature 
( cont’d ) 
• Time-based model (DeStefano & Grivas 1998) 

- motivated by need for state transition probabilities 
- does not capture the effect of explanatory variables 

• Consequences 
- biased state transition probabilities 
- poor condition predictions 
- suboptimal maintenance decision making 
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Methodology 
• Objectives 

- develop time-based model that captures effect of explanatory 
variables 

- derive a method to compute discrete-time state-based transition 
probabilities 

• Recognize deterioration is a continuous stochastic process 
• !  = inspection period 
• Observed condition states: 1, 1, ..., 1, 0, 0, ..., 0 (bivariate case) 
• Observations depend on threshold defining the states 
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Methodology ( cont’d ) 
• t = time since most recent rehabilitation or construction 
• T = duration of a given state (state 1) 
• Approach 

- estimate pdf of T, f (t ), as a function of explanatory variables 
- compute transition probabilities based on f (t ) and !  
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Hazard Rate Function 
• R(t,!) = transition probability out of state 1 at time t 

• R(t,!) = Prob t <T < t + !T >t( ) = F(t + !) "F (t )
S(t )

 

 F(t ) = cumulative distribution function of T 
S(t ) = 1 - F(t ), survival function 

• Hazard rate function !(t ) = lim
!"0

R(t,!)

!
 = f (t )
S(t )

 

 (instantaneous rate of transition out of current state after time t) 
• interpretation of !(t ) 

- constant ! duration independence 
- decreasing ! negative duration dependence 
- increasing ! positive duration dependence 
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Model Specification 
• T follows the Weibull pdf 
 !(t ) = p!

p
t
p"1   (! , p  = parameters) 

• If 0 < p < 1, !(t ) is decreasing (negative duration dependence) 
If p = 1, !(t ) = !  is constant (duration independence) 
If p > 1, !(t ) is increasing (positive duration dependence) 

• Capturing the effect of explanatory variables 
 ! = e

"#X  
 X  = column vector of explanatory variables 
!  = row vector of parameters 

• Estimation of parameters !  and   p  
- Maximum Likelihood 
- effect of censoring in observing T is accounted for 
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Transition Probability Computation:  
Bivariate Case 
• Probability of the transition from state 1 to state 0 

 P1,0 = R1(t,!) = 1"
exp["#

1

p1(t + !)p1 ]

exp["(#
1
t )p1 ]

 

• Probability of remaining in the same state 1 

 P1,1 = 1!R1(t,") =
exp[!#

1

p1(t + ")p1 ]

exp[!(#
1
t )p1 ]
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Empirical Analysis 
• Indiana Bridge Inventory (IBI)—part of National Bridge Inventory (NBI) 
• Reinforced concrete bridge deck observations 
• FHWA condition ratings: 9 (best) to 0 (worst) 
• 1974-1984 
• Number of observations for state 8: 368 (71% censored) 
• Number of observations for state 7: 1,092 (80% censored) 
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Parameter Es timates for S tate 8 
 
Variable Estimated parameter t-statistic 
Constant  2.13  9.44 
Age  0.15  6.31 
Region  – 0.84  – 7.06 
Type2  0.38  3.09 
HWClass1  – 0.64  – 2.89 
HWClass3  – 0.55  – 3.62 
HWClass5  – 0.57  – 3.36 
WearSurf1  – 0.80  – 4.73 
1/ p   0.52  12.01 
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Parameter Es timates for S tate 7 
 
Variable Estimated parameter t-statistic 
Constant  5.07  11.30 
AvgADT  – 2.64  !10

"5  – 2.70 
Region  – 0.83  – 5.57 
HWClass1  – 1.02  – 3.87 
HWClass3  – 1.30  – 5.15 
HWClass5  – 1.14  – 4.57 
WearSurf1  – 0.99  – 3.74 
WearSurf2  – 1.15  – 4.23 
1/ p   0.88  11.26 
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Summary 
• Critiqued state-based model transition probability estimation methods 
• Developed time-based stochastic duration model that takes into 

account the effects of causal (explanatory) variables 
• Derived a methodology for computing discrete-time state-based 

transition probabilities from time-based duration models 
• Demonstrated the methodology using bridge deck condition data 
• Statistically tested for state-dependence and age-heterogeneity using 

the time-based models 
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Issues for Future Research 
• Definition of discrete condition states 
• Network of interdependent components 
• Functional form of hazard rate function (monotonic vs. non-monotonic) 
• Identification of pertinent explanatory variables 
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Transition Probability Computation:  
Multivariate Case 
• Probability of remaining in the same state 2 

 P2,2 = 1!R2(t,") =
exp[!#2

p2 (t + ")p2 ]

exp[!(#2t )
p2 ]

 

• Probability of the transition from state 2 to state 1 
 P2,1 = Prob state = 1 at time ! = t + "T2 > t( ) 

  = Prob ! <T2 < ! + d!T2 > t( ) "Prob T1 > t + # $ !( )
t

t +#

%  

  = !2(" ) #S2(" ) #S1(t + $ % " )

S2(t )t

t +$

& d"  

  = p2!2p2 exp[(!2t )p2 ] "
p2 #1

t

t +$

% exp[#(!2t )
p2 # !1

p1(t + $ # " )
p1 ]d"  
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Transition from Sta te 2 to S ta te 1 
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Transition Probability Computation:  
Multivariate Case ( cont’d ) 
• Probability of the transition from state 2 to state 0 
 P2,0 = 1!P2,2 !P2,1 = R2(t ,") !P2,1 
 


