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Relevant NAS Measures of Performance and 
their Relations

Background
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How Do We Predict 
Equipment Failures?

Failure Rate (�)
For a stated period in the life of a piece of equipment, the ratio of the total number
of  failures N (or k for observed) to the total cumulative observed time T is the 
observed failure rate �:

�=k/T
The probability of a piece of equipment failing in the interval between t and t + dt
given that it has survived until time t:

�(t) dt
where �(t) is the failure rate.
The probability of failure in the interval t to t + dt unconditionally:

f(t) dt
where f(t) is the failure probability density function.

t t +∆t0
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How Do We Predict 
Equipment Failures?

The failure rate λ(t) is probability of failure in a period t to t + ∆t 
under the condition that no failure occurred before t,
divided by ∆t and ∆t going to 0.

λ(t) = lim
∆t → 0

Prob{ t ≤ T < t +∆t             }| T ≥ t
∆t

t t +∆t0 T
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How Do We Predict 
Equipment Failures?

Probability Density Function
Probability distributions are typically defined in terms of the probability density 
function. For a continuous function, the probability density function (pdf) is the 
probability that the variate has the value t. 
Since for continuous distributions the probability at a single point is zero, this is 
often expressed in terms of an integral between two points. 

For a discrete distribution, the pdf is the probability that the variate takes the value t 
(commonly denoted by x).

The following is the plot of the 
normal probability density function. 
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How Do We Predict 
Equipment Failures?

Reliability R(t) 
The probability of survival to time t is defined as the reliability R(t). 

If λ(t) is constant then:

R(t) = e
- λt

1

0

R(t)

t

Reliability Function:
the most common shape
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How Do We Predict 
Equipment Failures?

The time between equipment failures can follow 
different probability distributions:

The effect of the Weibull shape 
parameter � on the pdf

The Weibull Distribution
The Weibull distribution is widely used in 
reliability and life data analysis due to its 
versatility. Depending on the values of the 
parameters, the Weibull distribution can be 
used to model a variety of equipment life 
behaviors. 

• = scale parameter
• = shape parameter (or slope)
• = location parameter
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How Do We Predict 
Equipment Failures?

The exponential distribution is a very commonly used distribution in reliability 
engineering. Due to its simplicity, it has been widely employed. The exponential 
distribution is used to describe units that have a constant failure rate λ.
The general formula for the probability density function (pdf) of the exponential 
distribution is: 

Exponential Distribution

Plot of the Exponential pdf
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How Do We Predict 
Equipment Failures?

Other probability distributions used in modeling 
time of equipment failure occurrences:

Normal Distribution

Gama Distribution

where

Rayleigh Distribution  
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How Do We Predict 
Equipment Failures?

Numerical Example:

If a piece of equipment fails according to Rayleigh Distribution

with parameter � = 1860 hours, what is the Reliability of this 
piece of equipment after 1000 hours of work, i.e. R(1000)?  
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The probability of this piece of equipment still working at 
the 1000th hour is 0.87
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How Do We Predict 
Equipment Failures?

Numerical Example:

Assume a piece of equipment fails with a constant rate �=0.82 
failures/hour.  What is the probability that the equipment will still 
work after being utilized for 6 hours?

The probability of this piece of equipment still working at 
the end of the 6th hour is 0.995.
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How Do We Predict 
Equipment Failures?

Mean Time Between Failures (MTBF):

For a stated period in the life of a piece of equipment the mean value of the length of
time between consecutive failures, computed as the ratio of the total cumulative 
observed time to the total number of failures N (or k for observed).

MTBF = T/k
MTBF is the mean Up time between failures.  It is the average of values of (t).
When failure rate � is constant, MTBF = 1/ �.



15

How Do We Predict 
Equipment Failures?
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How Do We Predict 
Equipment Failures?

Mean Time To Fail (MTTF):

For a stated period in the life of a piece of equipment computed as the ratio 
of the total cumulative observed time to the total number of failures N 
(or k for observed). 

MTTF = T/k

The only difference between MTBF and MTTF is in their usage. MTTF is applied to
equipment that are not repaired (transistors, bearings), and MTBF is applied to items 
which are repaired.  
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Markov Chains 
A Markov chain is a sequence of random (stochastic) values whose
probabilities at a time interval depend upon the value of the number 
at the previous time. A simple example is the non-returning random 
walk, where the walkers are restricted to not go back to the location just 
previously visited. 

{ } { }iXjXPiXkXkXkXjXP tttttt ======== +−−+ |,,.....,| 11111001

for t = 0,1,2,.. and every sequence i,j,k0, k1, k2,…kt-1.

Markovian property: the conditional probability of any future “event”
given any past “event” and the present state Xt=i, is independent of the 
past event and depends upon only the present state of the process.   
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Markov Chains
Transition Probabilities 

The controlling factor in a Markov chain is the transition 
probability.  It is a conditional probability for the system to go to a 
particular new state, given the current state of the system. 
For many problems, the Markov chain obtains the much desired 
importance sampling. This means that we get fairly efficient estimates 
if we can determine the proper transition probabilities. 

{ }iXjXP tt ==+ |1The conditional probabilities are called 

transition probabilities.  If, for each i and j,

{ } { } ,..1,0 allfor  ,|| 011 ======+ tiXjXPiXjXP tt

then the (one step) transition probabilities are said to be stationary
and are denoted by pij.
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Markov Chains 
Defining a Markov Chain 

A stochastic process 

{ } . allfor   0 iiXP =

{ }tX (t = 0,1, …) is a finite-state Markov chain 
if it has the following:

1. A finite number of states,

2. The Markovian property,

3. Stationary transition probabilities,

4. A set of initial probabilities
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Markov Chains
Defining a Markov Chain 

A convenient notation for representing the transition probabilities is 
the matrix form:
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Markov Chains 
Defining a Markov Chain 

)(n
ijp is just the conditional probability that the random variable

X, starting in state i, will be in state j after n steps

Equivalently:
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is just the conditional probability that, starting from state i, the process goes
to state k after v steps and then to state j in n – v steps. Summing these 
conditional probabilities over all possible k must yield       .

Markov Chains
Chapman-Kolmogorov Equations 

)(n
ijp

The n-step transition probability is useful when the process is in 
state i and we want to calculate the probability that the process will 
be in in state j after n periods.

Chapman-Kolmogorov equations provide a method for computing 
these n-step transition probabilities:
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Explanation:
In going from state i to state j in n steps the process will be in some state k after 
exactly v steps. 
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Markov Chains
Steady-State Probability 

Steady state probability means that the probability of finding the 
process in certain state, say j, after a large number of transitions tends 
to the value �j, independent of the initial probability distribution 
defined over states.  It is important to note that steady-state 
probability does not imply that the process settles down into one 
state.  On the contrary, the process continues to make transitions 
from state to state, and at any step n the transition probability from 
state i to state j is still pij. 
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Markov Chains
Steady-State Probability 
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Why is it useful?
Why is it important?

the one-step transition matrix

the two-step transition matrix
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Markov Chains
Steady-State Probability 

Why is it useful?
Why is it important?
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Markov Chains
Steady-State Probability 

Why is it useful?
Why is it important?
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The probability of being in state j after 8 steps (weeks, days…--any time units) 
appears to be independent of the initial state. 
In other words, there is a limiting probability that the system will be in state j after 
a large number of transitions, and this probability is independent of the initial state i.
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Markov Chains
Expected Average Cost per Unit Time  

Why is it useful?
Why is it important?

then the long run expected average cost per unit time is:

The long-run average cost associated with a Markov chain:
If a cost C(Xt) is incurred when the process is in state Xt at time t, then 

the expected average cost incurred over the first n periods is:
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Markov Chains
Expected Average Cost per Unit Time  

Numerical Example:
Before the end of one inspection period (t) we are concerned about our maintenance 
budget and want to know if we can perform maintenance of (for example) a radar 
system. Assume that the following costs for each type of radar maintenance are 
incurred:       For  j=0,  i.e., regular maintenance, C(j=0)= $2 units

j=1,  i.e., minor repair, C(j=1) = $3 units
j=2,  i.e., major repair, C(j=2) = $5 units
j=3,  i.e., replacement, C(j=3) = $20 units

If the long-run transition probabilities are 
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Then the long-run expected cost of maintaining radar at the end of the inspection 
period t is:

= (2)(0.289)+(3)(0.285)+(5)(0.264)+(20)(0.166)=$6.073 units
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Obsolescence Analysis
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λ

Bathtab Curve 

Obsolescence Analysis 
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Traditional Elements of Obsolescence
An “obsolescence” event occurs if:
• There is a lack of technician training (“basic obsolescence”)

The equipment could be in either the useful life phase or the wearout phase.  
The absence of appropriately trained technicians increases MTTRs making it 
economically unjustifiable to keep such assets in the system.

• There is a lack of spare parts (“basic obsolescence”).
Inability to obtain spare parts increases MTTRs and reduces assets’ 
AVAILABILITY (A = MTBO / (MTBO + MTTR).   If spare parts are not 
attainable, an asset will become obsolete even if its failure rate is in the useful 
life phase.

• functionality of a piece of equipment cannot be changed (“functional 
obsolescence”).  
Automation tools (Host computer or ARTS) have aged and are no longer able 
to “absorb” additional functions required to modernize these tool.
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Traditional Elements of Obsolescence
Cost Issues:

• operation and maintenance costs exceed the FAA’s designated 
budget

• maintenance cost exceeds replacement cost 

How do we predict the time at which a piece of equipment becomes
obsolete? 
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Background

How does the Obsolescence Model fit into our overall NAS Model 
for Infrastructure Performance and Analysis?

What distinguishes the Obsolescence Model from the overall NAS 
Model for Infrastructure Performance and Analysis?

What is so specific about the Obsolescence Model? 
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Equipment States and Maintenance Decisions
Where does the Obsolescence model fit within the overall NAS Model for 

Infrastructure Management? 

Cd + CmIf scheduled $A4, otherwise $B4
If scheduled $C4, otherwise $D4
If scheduled $E4, otherwise $F4
If scheduled $G4, otherwise $ H4

If scheduled, $0; otherwise $X4 
If scheduled, $0; otherwise $Y4
If scheduled, $0; otherwise $Z4
If scheduled, $M4; otherwise $N4

0 = good as new
1 = operable – minor deterioration
2 = operable – major deterioration
3 = inoperable

4. Upgrade

$ 0
$ 1 000,000
$ 6 000,000
$ 20,000,000

$ 0
$ 0
$ 0
$ 0 

$ 0
$ 1 000,000 (for example)
$ 6 000,000
$ 20,000,000

0 = good as new
1 = operable – minor deterioration
2 = operable – major deterioration
3 = inoperable

1. Leave ASR  
as it is

Cd + CmIf scheduled $A3, otherwise $B3
If scheduled $C3, otherwise $D3
If scheduled $E3, otherwise $F3
If scheduled $G3, otherwise $ H3

If scheduled, $0; otherwise $X3
If scheduled, $0; otherwise $Y3
If scheduled, $0; otherwise $Z3
If scheduled, $M3; otherwise $N3

0 = good as new
1 = operable – minor deterioration
2 = operable – major deterioration
3 = inoperable

3. Replace

Cd + CmIf scheduled $A2, otherwise $B2
If scheduled $C2, otherwise $D2
If scheduled $E2, otherwise $F2
If scheduled $G2, otherwise $ H2

If scheduled, $0; otherwise $X2
If scheduled, $0; otherwise $Y2
If scheduled, $0; otherwise $Z1
If scheduled, $M2; otherwise $N2

0 = good as new  
1 = operable – minor deterioration
2 = operable – major deterioration
3 = inoperable

2. Maintenance

Total 
Cost

Ct =

Cd + Cm

Maintenance 
Cost

Cm

Expected cost 
due to caused 
traffic delays 

Cd

Cost

State
(probability)   

Decision 

NAS Model for Infrastructure Management 
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Obsolescence

Computers, software or electronics are more 
market driven than (for example) radars. 

Binary Decision Variable S (keep=0, upgrade=1) 

�


�

=
,1
,0

S
if equipment age, performance and/or market competition are not issues 

otherwise
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New Thinking   
Classification of different methodologies as a 

function of:
• obsolescence definitions
• types of equipment analyzed

Obsolescence Model should be applicable to 
equipment:

• whose upgrades are age-dependent 
but also include market consideration 

• whose upgrades are primarily market driven
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New Thinking

Technology is improving: old systems are phased out and 
eventually replaced by newer models.   

When making decisions on whether to keep a piece of equipment  
or replace it with a new-technology (currently available on the 
market), we take into consideration that it might be better to 
keep the old equipment and wait until it is replaced with an 
even newer and more advanced technology. 

Technology changes stochastically: costs associated with 
technology can vary with time; introduction of technology has a 
probabilistic nature. 
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New Thinking

Consider the following variables as uncertain:

• the time at which the new technology becomes available

• the cost of the new technology

These are important issues when making maintenance decisions. 



41

Proposed Methodology
Optimization Technique:
Methodology to obtain optimal solutions by working backward from

the end of a problem to the beginning, by breaking up a larger 
problem into a series of smaller, more tractable problems. 

Dynamic Programming (DP) is often used to solve network, 
inventory, and resource allocation problems. 

DP is used as a central methodology to find optimal replacing.  
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What is availability?

What is service availability?

What factors affect airport and terminal area availability?

How do we determine airport/airspace availability?

What is availability?
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Availability Modeling for Airports

Traditional availability estimates consider weather and equipment availability 
separately.

Weather Availability:

Equipment Availability:  A = MTBF / (MTBF + MTTR)

Aop =  (ts - tdown) / ts

w
w MTTCMTBC

MTBC
A

+
=

Availability: probability (or fraction of time) the system is operating.
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However, during bad weather conditions airport availability for 
arrivals is different from the availability for departures due to 
different ceiling and visibility requirements.  

Airport equipage influences weather availability: if  an airport is 
not  CAT III equipped, weather related availability is lower.

0 1
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Relation between 
Weather Availability for Arrivals 

and Equipment Availability 
for CAT III Approaches

Availability Modeling for Airports
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Airport arrival service availability and departure service 
availability: includes weather and equipment availability     
for each primary wind direction and noise constraint. 

It is a percentage of time (or probability) that a service for 
arrivals and departures is being provided.

WEATHER

AIRPORT
SERVICE OUT

up

down

up

down

up

down

up

OUT

up

bad
goodgood

EQUIPMENT

equipment required for all
weather conditions out

bad weather - requires CAT III
Precision Approaches

equipment for CAT III
Precision Approaches out

equipment for CAT I
Precision Approaches out

up

Arrival Service Availability

Airport Service Availability
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Arrival/Runway Service Availability

Airport Service Availability
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Conceptual approach for airport service availability:
1) arrival and departure equipment availability estimated 

separately for each weather condition
(VFR, IFR CAT I, CAT II and CAT III) using 
Fault Tree Analysis (FTA)

2) single runway availability is combined with that of 
other runways used within a particular runway 
configuration.

3) arrival and departure availability for each runway 
configuration used for service availability

Airport Service Availability
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√√√√√√√√ SERVICE AVAILABILITYSERVICE AVAILABILITY

FAULT TREE ANALYSISFAULT TREE ANALYSIS

AIRPORT PERFORMANCE ASSESSMENTSAIRPORT PERFORMANCE ASSESSMENTS
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Fault Tree Analysis (FTA)

A Fault Tree is a graphical method of describing the combination of 
events leading to a defined system failure.
In fault tree terminology the system failure mode is known as 
the top event.  The fault tree involves three logical possibilities and two
main symbols. 

Fault tree Reliability block diagram

AND

OR

Parallel (redundant)

Series
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Boolean algebraic equations:Boolean algebraic equations:
C = L + G + D + R + LC = L + G + D + R + L
D = N x (E + V)D = N x (E + V)
Unavailability C:Unavailability C:
C = L + G + (N x E) +  (N x V) + D + R + LC = L + G + (N x E) +  (N x V) + D + R + L

Fault Tree Analysis (FTA)

The OR gate: any input causes the output to occur.
The AND gate: all inputs need to occur for the output to occur.
The voted gate: two or more inputs are needed for the output to occur.
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a
cr

n

c

c
a
wnfr AxA �

=

=
1

The runway availability for arrivals a
on runway r in configuration f 
(for a primary wind direction w and noise constraint n) a

wnfrA

a
crA : arrival availability for weather category c, for runway r

is:

cx :  percentage of  time weather category c is use 

C : weather category

Runway Availability for Arrivals
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2) single runway availability is combined with that of other runways 
used within a particular runway configuration. 

)1(1 a
wnfrwnf AA −−=α

ni
a
wnfr

a
wnfr

a
wnfrwnf rrrAAAA

n
.......for     ),1).....(1)(1(1 121

=−−−−=α

where n is the number of runways

single  runway availability
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Primary wind
direction

w

Noise
Constraint

N

Runway
configuration

 f

Primary Runways in Use
R

w1 = North None f1

17L

13L

13R

31
L

31
R

18C
17C

17R
1 8L

36
C

36
R

35
L

35
C

35
R

runways: 31R and 36R
w1 = North None f2

1
7L

13L

13R

31
L

31
R

1
8

C
1

7
C

1
7

R
1 8

L

3
6C

3
6R

3
5

L
3

5
C

3
5R

runways: 35R, 35L,
                                                               and 36R

w1 = North None f3 Runways: 35C and 36C
w2 = South None f1 Runways:  13R, 17L
w2 = South None f2 Runways: 13R, 17C and 18R
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3) arrival availability for each runway configuration used for service 
availability

The total airport arrival service availability           is weighted 
by the percentage of use of each  previously calculated 
availability. 

W     : number of primary wind directions

N      : number of noise constraints

F       : number of runway configurations

wnfy : percentage of time each runway configuration f 
was in use in primary wind direction w
and noise constraint n

αA

αα
wnf

W

w

N

n

F

f
wnf AyA ���

= = =

=
1 1 1
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Airport Availability Estimates
Case Study: Newark International Airport (EWR)

EWR 
Runway Geometry
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EWR Runway IFR Capability

Runway Configuration Information

Outages by NAPRS Cause Code

Total Downtime by NAPRS Cause Code

Runway Configuration Information

Percent Occurrence of Weather Categories by Month, 
Daytime Hours

Required Data
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QRAS Software
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QRAS Software
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Parameter Description Availability
AA Airport Arrival Availability 0.9950

AD Airport Departure Availability 0.9946

AAC1 Arrival Availability for Configuration 1 0.9982

ADC1 Departure Availability for Configuration 1 0.9931

AAC2 Arrival Availability for Configuration 2 0.9573

ADC2 Departure Availability for Configuration 2 0.9931

AAC3 Arrival Availability for Configuration 3 1.0000

ADC3 Departure Availability for Configuration 3 0.9965

AAC4 Arrival Availability for Configuration 4 0.9989

ADC4 Departure Availability for Configuration 4 0.9965

Arrival and Departure Configuration Availabilities
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Arrival and Departure Configuration Availabilities

Parameter Description Availability
AAR4L Arrival Availability, Runway 4L 0.9573

ADR4L Departure Availability, Runway 4L 0.9580

AAR4R Arrival Availability, Runway 4R 0.9989

ADR4R Departure Availability, Runway 4R 1.0000

AAR11 Arrival Availability, Runway 11 0.9573

ADR11 Departure Availability, Runway 11 0.9580

AAR22L Arrival Availability, Runway 22L 0.9573

ADR22L Departure Availability, Runway 22L 0.9580

AAR22R Arrival Availability, Runway 22R 0.9170

ADR22R Departure Availability, Runway 22R 0.9170

AAR29 Arrival Availability, Runway 29R 0.9170

ADR29 Departure Availability, Runway 29R 0.9170
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√√√√√√√√ SERVICE AVAILABILITYSERVICE AVAILABILITY

√√√√√√√√ FAULT TREE ANALYSISFAULT TREE ANALYSIS

AIRPORT PERFORMANCE ASSESSMENTS:AIRPORT PERFORMANCE ASSESSMENTS:

Censored Regression Censored Regression –– TobitTobit Model Model 

Deterministic Queuing ModelDeterministic Queuing Model
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Factors Affecting Airport 
Performance

• Equipment outages (scheduled/unscheduled)
• Weather (wind/visibility…)
• Air traffic control procedures
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Objective:
To make a clear distinction between demand and capacity 

impacts on airport throughput.  

To remove the impact of increased demand on airport 
throughput and to determine if unscheduled outages had 
any effect on airport performance

A special regression is used that included censored data.  The 
censored data is defined as the smaller value between 
capacity and demand.

Censored Regression 
Tobit Model
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Runway Service Alternatives
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Data

• FAA MMS: Maintenance Management System data base 
(equipment outages)

• ASPM: Aviation System Performance Metrics data base 
(airport quarter-hour throughput, weather conditions, 
flight rules)

• San Francisco International Airport

• Phoenix Sky Harbor International Airport  
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Dependent variable: Max throughput (capacity) in 15 minutes

Explanatory variables: 

• Equipment outage: dummy variable 
• Flight rule (IFR/VFR): dummy variable
• Wind direction/speed: by runway direction
• Visibility

etc

Censored Regression 
Tobit Model
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Censored Regression 
Tobit Model

The throughput of a particular runway configuration in a time period
is determined by either the demand or the capacity during that period.

If demand is less than capacity, a runway could accommodate 
all demand.  

On the other hand, if demand exceeds capacity, throughput would 
reach the capacity limit, resulting in unserved demand (i.e., delays), 

and a portion of demand would not be served.
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Methodology for Aircraft Throughput during Outages

tArr arrival throughput in time interval , which is usually 15 minutes; 

t0β constant to be estimated in the model in time interval ;

ntβ nth coefficients to be estimated in time interval ;

ntx nth independent variable in time interval ;

tε error term of the model in time interval ;

tCapacity capacity in time interval ;

tDemand demand in time interval.

Censored Regression - Tobit Model

�
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Tobit Model

Methodology for Aircraft Throughput during Outages
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Analysis - VOR

Very High Frequency Omni-directional Range: determines aircraft 
position/distance
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7/9/02 16:447/9/02 14:55FL80VOR

6/5/02 20:306/5/02 15:19FL80VOR

4/12/02 18:504/12/02 16:30FL80VOR

10/14/01 17:4010/14/01 16:30FL80VOR

10/14/01 17:4010/14/01 16:12FL80VOR

9/30/01 19:259/30/01 18:40FL80VOR

8/23/01 15:258/23/01 14:25FL80VOR

7/24/01 19:557/24/01 16:50FL80VOR

5/8/01 18:505/8/01 16:25FL80VOR

Outage 
Local End Date and 

Time

Outage 
Local Start Date and 

Time
Interrupt ConditionCode CategoryFacility 

Type

List of VOR Outages at SFO

List of VOR Short Unscheduled Outages at SFO
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Analysis Results - VOR

(not significant)

12320.5505

-0.6-0.450214:00 pm-21:00 pm VFR28L,28R   

(not significant)

12320.2356

-1.19-1.16114:00 pm-21:00 pm VFR28L, 28R |

(not significant)

26670.712

0.370.220214:00pm-21:00 pm VFR1L, 1R

(not significant)

26670.0855

1.720.785914:00 pm-21:00 pm VFR28L, 28R |

Observations

P-value
(Significance 

level 0.05)t-value

Estimated
Affect of 

Throughput
Time Interval 

(local)

Weather 
Condition

Runway
Configuration
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Reconstruction - VOR

Pilots VOR & DME

outage

Pilots ControllerRadar
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Reconstruction - VOR

Airport Adaptability:
ability to shift to different air 
traffic procedures or a set of equipment 
facilities in order to accommodate new 
circumstances related to equipment outages. 
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Analysis – ALSF-2

Approach Lighting System with 
Sequenced Flashing Lights: 
impact depends on the 
visibility, located on runway 
28R at SFO
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Analysis – ALSF-2

3/19/2001 20:203/19/2001 18:47FL8028RALSF-2

3/19/2001 20:203/19/2001 18:47RS8028RALSF-2

12/9/2000 2:3012/9/2000 1:30FL8028RALSF-2

11/15/2000 17:3011/15/2000 16:55RS8028RALSF-2

9/2/2000 20:309/2/2000 19:30FL8028RALSF-2

8/9/2000 22:008/9/2000 20:00RS8028RALSF-2

7/28/2000 20:007/28/2000 18:00RS8028RALSF-2

Local End Date and TimeLocal Start Date and TimeConditionCategoryType

Outage Outage Interrupt Code RunwayFacility 

List of ALSF-2 Outages at SFO 
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Reconstruction – ALSF-2

IFR: 2 arrival streams � 1 stream 
on 28R

ALSF-2 outage & IFR: single 
arrival stream on 28R � 28L
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5759
0.3590 

(not significant)-0.92-3.2371Outage18:00 pm-
22:00 pmIFR1L, 1R

5759
0.9999 

(not significant)0.0019.4989Outage18:00 pm-
22:00 pmIFR28L, 28R |

1684
0.2452 

(not significant)1.161.127Outage18:00 pm-
22:00 pmVFR1L, 1R

1684
0.7628 

(not significant)0.300.2904
Outage*

(occurred)18:00 pm-
22:00 pm

VFR 
28L, 28R |

Number of 
Observations

***

Significance at
0.05 Levelt-value

Estimated Affect 
on Throughput

**

Dummy 
Variable

Time 
Interval
(local)

Weather 
Condition

(IFR of 
VFR)

Runway 
Configuration

(arrivals | 
departures)

* Outage = 1 if there was an ALSF-2 outage during the period j; otherwise Outage = 0.
** Estimated change in quarter-hour throughput.
*** Each observation is 1 quarter-hour period.

Analysis Results for ALSF-2s
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Reconstruction – ALSF-2

Airport Re-configurability:
airport’s ability to switch operations to a different 
runway in case of equipment outages, or utilize 
a set of equipment facilities with similar functions 
to maintain a desired level of performance. 
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Conclusions

VOR and ALSF-2 unscheduled outages do not have 
significant impact on arrival and departure throughputs at 
SFO

Airport is highly adaptable and re-configurable regarding 
VORs and runway lights.
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Consequences of equipment outages are very 
much airport specific.

SFO is not sensitive to VOR unscheduled 
outages during IFR and VFR conditions.

ALSF-2 unscheduled outages during the IFR
conditions do not cause capacity degradation. 
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Phoenix Sky Harbor International Airport

Analysis of PHX Airport
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ATCRBS Results

29404
0.0001 

(significant)-3.86-1.13OutageVFR7L

29404
<.0001 

(significant)-4.64-1.14OutageVFR7R, 8 |

34486
0.0856 (not 
significant)-1.72-0.53OutageVFR25R

34486
<.0001 

(significant)-7.51-0.94
Outage*

(occurred)VFR25L, 26 | 

Number of 
Observations***

Significance at
0.05 Levelt-valueEstimated Affect on 

Throughput**
Dummy 
Variable

Weather 
Condition

(IFR of 
VFR)

Runway 
Configuration

(arrivals | departures)

Analysis Results for ATCRBS at PHX 

* Outage = 1 if there was a ATCRBS outage during the period j; otherwise Outage = 0.
** Estimated change in quarter-hour throughput.
*** Each observation is 1 quarter-hour period. 
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ATCRBS Results

West flow (25L,26 | 25R):
• the arrival throughput decreased by 0.94 operation per 
quarter-hour, 

East flow (7R, 8 | 7R):
• the arrival throughput decreased by 1.14 operations per 
quarter-hour
• departure throughput decreased 1.13 operations per quarter-
hour    

We found the quantitative evidence of the reduction in arrival 
and departure throughputs due to the outages of the main 
ATCRBS system.
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Mode S Results

Analysis Results for Mode S at PHX 

* Outage = 1 if there was a Mode S outage during the period j; otherwise Outage = 0.
** Estimated change in quarter-hour throughput.
*** Each observation is 1 quarter-hour period. 

29404
<.0001 

(significant)-6.09-0.96
OutageVFR7L

29404
<.0001 

(significant)-4.26-0.81OutageVFR7R, 8 |

34486
<.0001 

(significant)-5.08-0.94OutageVFR25R

34486
<.0001 

(significant)-4.88-0.6
Outage*

(occurred)
VFR 25L, 26 |

Number of 
Observations***

Significance at
0.05 Levelt-valueEstimated Affect on 

Throughput**
Dummy 
Variable

Weather 
Condition

(IFR of 
VFR)

Runway 
Configuration

(arrivals | departures)
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Mode S Results

When PHX airport operated in the West flow (25L, 26 | 25R) 
in the VFR conditions:
• the arrival throughput decreased by 0.6 operations per quarter-hour 
• the departure throughput decreased by 0.94 operations per quarter-hour.

In the East flow, during the VFR conditions, 
with aircraft arriving on runways 7R and 8: 
• the throughput decreased by 0.81 operations per quarter-hour.  

Under the same conditions, when aircraft departed from runway 7L:
• the throughput decreased 0.96 per quarter-hour.  

The full outages of Mode S, due to the loss of the overlapping radar 
coverage, resulted in both arrival and departure throughput deteriorations.
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√√√√√√√√ SERVICE AVAILABILITYSERVICE AVAILABILITY

√√√√√√√√ FAULT TREE ANALYSISFAULT TREE ANALYSIS

AIRPORT PERFORMANCE ASSESSMENTS:AIRPORT PERFORMANCE ASSESSMENTS:

√√√√√√√√ Censored Regression Censored Regression –– TobitTobit ModelModel

Deterministic Queuing ModelDeterministic Queuing Model
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Methodology

Deterministic modeling 

(1)
A deterministic aircraft separation model is used to estimate 
airport/runway capacity.  This method is useful for quick estimates 
of the number of aircraft operations per facility under some 
predefined conditions (i.e., mile-in-trail separation and aircraft 
mix).  However, these methods do not provide delay estimates.
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(2)
A deterministic queuing approach is then used to 
estimate capacity and delays due to single outages 
for a hypothetical airport (i.e., to estimate the
impact of outages on runway throughput) and
terminal airspace area.  
Deterministic queuing analysis is used for 
calculating aircraft delays, numbers of aircraft 
experiencing queuing, and queue duration.  This 
method can handle traffic conditions where both 
the arrival and service rates vary over time.

Methodology
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Deterministic Aircraft Separation  Method

Deterministic Aircraft Separation Model: 
considers arrivals only, and assumes that the runway occupancy time
is not  the bottleneck in the system  

Ti :  time when lead aircraft i passes over runway threshold
Tj :  time when following aircraft j passes over runway threshold 

[Tij]=  Tj – Ti :  matrix of actual time separations at runway threshold 
for two successive arrivals, an aircraft of speed 
class i followed by an aircraft of speed class j

pij : probability that a lead aircraft of class i will be 
followed by a trail aircraft of class j

E[Tij] =      : expected value of Tij, i.e., mean service time
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Deterministic Aircraft Separation  Method
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Capacity is

Degraded Capacity
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Deterministic Queuing Analysis

Deterministic queuing analysis is applied at a macroscopic level, 
i.e. by modeling continuous aircraft flows rather than individual 
aircraft. 

Varying Service Rate Case
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Pulsed Service Problem

The arrivals to the terminal area or an airport (i.e., runway) have a 
constant arrival rate (λ = aircraft/hour) but the service rate (µ = 
aircraft per hour) is “pulsed” (time-dependent) and may be 
defined as follows:

�


�

=
2

0 
µ

µ
functionsequipment   theif  ,

out isserver   theclosesthat equipment any or  ILS  theif  ,
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Deterministic Queuing Diagram for ILS Outages

ILSt4 t5 t6

µ2
λ

N(t)

n2

aircraft arrivals

aircraft departures

time

N
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Instrument Landing System (ILS)
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On-board ILS Gauge from a Boeing 747-400 Aircraft
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The following measures can be calculated for given
e: time equipment is functioning
r: outage time and 
L: time length (L=e+r):

1) Queue duration:

2) Number of aircraft experiencing queue: 3600/)( QtQN ×= λ

3) average aircraft delay:
L

tr
d Q

2

×
=

4) total delay:
2

λ××
= Q

d

tr
T

λµ
µ

−
×=

2

2 r
tQ
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This model is applicable to the precision approaches  for CAT I, II 
and III.
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Varying Service Rate

• the arrival rate is constant

• the service rate is varied (i.e., degraded) due to the
equipment failures but the server (i.e., runway)
is not completely closed 
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Deterministic Queuing Diagram for ASR Outages
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The service rate is defined as:

��

�
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failsserver  degradesthat equipment other any or  ASR if ,

  

The same measures could be calculated:

1) Queue duration

2) Number of aircraft experiencing queue

3) Average aircraft delay

4) Total delay 
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