Impact of Aircraft Size and Service Frequency on Airlines' Demand and Market Share

Wenbin Wei
San Jose State University
Mark Hansen
University of California, Berkeley

Presentation Outline

- Motivation and objective
- A framework of demand and market share analysis
- Data source and estimation results
- Implications and applications
- Summary

Motivation (1)

- Airlines' using larger aircraft can alleviate airport congestion
 - Building new runways or ATC systems is expensive
 - Increase of air travel demand can be accommodated through increase of service frequency or aircraft size or both
 - Airport throughput will be increased if airlines use larger aircraft
 - Major airports have large proportion of operations of small aircraft, especially in short-haul markets
 - Future aircraft size: small (Boeing's opinion) or large (Airbus' opinion)?

Motivation (2)

- What's the impact of airport expansion and government regulation on airlines' decisions on service?
 - Airport capacity expansion, through either building new runways or ATC systems, influences airlines' choice of aircraft size, service frequency and routing network
 - Government regulation, such as landing fee policy, also influence airlines' choices

Motivation (3)

- Aircraft fleet simplification in airlines' reconstruction process after September 11th, 2001
 - Only the most profitable aircraft are retained in the fleet
 - In practice, there is no model capturing the role of aircraft size specifically

Objective and Goals

- Study the role of aircraft size and service frequency in airlines' demand and market share
 - In duopoly markets
 - At the market level
 - To account for "seat availability": proportion of seats available to local passengers

"Aircraft Size"

Aircraft	Seat Capacity	
B737-1/2	110	
B737-5/6	111	
B737-3/7	130	
B737-4	143	
B727-2	148	
B757	185	
B767-2	188	
B767-3	234	
B747-2/3	401	
B747-4	432	

- Focus on jet aircraft
- Not including small regional aircraft (with fewer than 60 seats)
- Ranging from 100 seats to 400+ seats
- Seat capacity is based on actual seat configurations by each carrier

Source: Form 41

Analysis Framework

- Study the role of aircraft size and service frequency, together with other service attributes, in demand and market share
- Focus on duopoly (i.e. two airlines) non-stop markets (at the market level)
- Traveler choice-based two-level nested-logit model

Market Share and Demand Models

• Low-level result (for market share)

$$S_{im} = \frac{\exp(V_{im})}{\sum_{j} \exp(V_{jm})}$$

 V_{im} : deterministic utility if choosing airline i in market m

• High-level result (for total air travel demand)

$$Q_{m} = D_{m} \frac{\left(\sum_{j} \exp(V_{jm})\right)^{\theta}}{\exp(V_{om}) + \left(\sum_{j} \exp(V_{jm})\right)^{\theta}}$$

 D_m : saturation demand

 θ : "nested coefficient"

 $V_{\it Om}$: deterministic utility for "not air travel"

Passenger Utility Function

$$V_{jm} = \alpha \ln(Freq_{jm}) + \beta \ln(Size_{jm}) + \eta \ln(Aval_{jm}) + \gamma Fare_{jm}$$

- For non-stop markets with connecting passengers in flight
- Availability: percentage of seats available in local market
 - (total seats-connecting passengers)/total seats
- Effects captured by the specified airline service variables
 - Capacity effect: total seats= frequency*size*availability
 - Schedule delay: frequency
 - Safety, speed and amenity effect: size
 - RM effect (likelihood to get a seat): seats per flight =size* availability
 - Traffic mix effect: availability
 - Price effect: fare
- Two reasons to use "log" form
 - Diminishing returns from increasing flights or seats
 - Passengers' choice of airlines is an aggregation of choice of flights or seats
- Different coefficients reveal different contributions or roles

Coefficient Estimation Results

Parameters	Estimates	T
		statistics
α (Frequency)	1.287	41.43
β (Size)	0.185	2.45
η (Availability)	0.849	15.92
γ (Fare)	-0.002	-2.79
θ (Nested	0.333	10.21
Coefficient)		

- Log-linear models for market share and total demand
 - Data sample: 13 non-stop duopoly markets from 1989 to 1999
- Different contributions of service attributes in airlines' demand and market share
 - Trade-off between aircraft size and frequency
 - S-curve effect from increase of

 - higher than that for aircraft size

First Implication

- Passengers prefer increase of frequency rather than increase of aircraft size
 - Coefficient for service frequency is higher
- Airlines have no economic incentives to use aircraft larger than the least-cost aircraft
 - Market share ratio increases much faster with the increase of frequency than with the increase of aircraft size

Second Implication

- Passengers prefer smaller aircraft with higher availability rather than larger aircraft with lower availability
 - Convenience is more important than amenity
- Airlines' economies of scope realized by serving both connecting and local passengers are offset by reduction in service quality in hub-and-spoke network
 - Importance of traffic mix

Applications of Research Results (1)

- To predict and facilitate airlines' choice of aircraft size
 - For monopoly case: profit maximization problem
 - Extending duopoly demand model to monopoly case
 - For fixed utility (non-demand competition) case:
 constrained cost minimization problem
 - Airlines' trade-off between service frequency and aircraft size
 - Game-theoretical analysis in a general competitive environment
- Decision support on whether hub-and-spoke or direct service should be provided
 - Tradeoff between cost reduction and service quality reduction

Applications of Research Results (2)

- Social welfare and benefit analysis for airport capacity expansion and government regulations such as landing-fee policies
 - Airlines' choice of aircraft size, service frequency and routing network are affected by airport capacity and government policies
 - Impact can be quantified and monetized through the tradeoff between "fare" and other service variables in the demand model

Summary

- Impact of aircraft size and service frequency on airlines' demand and market share in non-stop duopoly markets
- A two-level nested-logit model framework
- Main findings:
 - Passengers prefer smaller aircraft size with higher service frequency and higher seat availability
 - Trade-off between size and service frequency; higher returns from increase of frequency
 - Importance of traffic mix effect; service quality reduction in hub-and-spoke network
- Applications and further studies