Demand Uncertainty in Ground Delay Programs

Thomas Vossen

Leeds School of Business, University of Colorado, Boulder

Joint with Michael Ball, Narender Bhogadi, Robert Hoffman

Introduction

- Models to support GDP decision-making have been studied extensively
 - Richetta & Odoni (1993,1994)
 - Hoffman (1997)
 - Ball et al. (2003)
 - Mukherjee (2003)
- General Approach
 - Determine optimal planned arrival rates in the presence of *stochastic* capacities

Motivation

- But what about *Demand* Uncertainty?
- Considering Demand Uncertainty
 - May indicate alternate approaches to GDP planning
 - May be used to measure the "value of information-sharing"
 - Alternate approach to measuring CDM benefits

Research Questions

- How to plan GDPs in the presence of Demand Uncertainty?
 - How does it compare with current approaches?
- What is the cost of uncertainty and what is the value of reducing that uncertainty?
 What is extent/nature of CDM benefits?

Measuring Quality of GDP Planning and Execution

Planned vs. Actual Airport Acceptance Rate

Model Alternatives

1. Minimize *E[Airborne Holding*| オ] subject to

 $E[Unutilized \ slots| \ \vec{n}] \le \varepsilon$ or $Pr\{Unutilized \ slots| \ \vec{n}\} \le \varepsilon$

2. Minimize $w_A E[Airborne Holding|\vec{n}] + w_U E[Unutilized slots|\vec{n}]$

Where

- \vec{n} : vector of planned arrival rates
- Given capacities, pop-up/cancelation probabilities (no drift)

Multiple Period GDPs

An efficient heuristic:

- Period 1:
 - Schedule smallest number of flights such that utilization requirement is met
- Period 2:
 - Schedule smallest number of flights such that utilization requirement is met, given the current distribution of flights in queue
- Etc.

 \rightarrow In fact, optimal for all instances considered

Results

Model suggest more staggered PAAR patterns

The Value of Information-Sharing

Concepts

- Information-sharing has led to reduction in demand uncertainty
- Reduction in demand uncertainty allows for lower PAARs
 - Lower levels of airborne holding while maintaining utilization
 - Higher utilization while maintaining airborne holding levels

Information Improvements under CDM

- CDM has improved information quality
 - CDMnet
 - Resource Allocation Procedures:
 - Compression eliminates "holes" in arrival stream

Analysis

- Considered PAAR vs Actual AAR (arrivals) for by hour for two airports;
 - Tried to group GDPs, e.g. only morning GDPs at SFO
 - ATL: used command center logs for PAAR and AAR
 - SFO: used logs for PAAR, tower counts for AAR.
- Key Questions:
 - Is PAAR or AAR increasing or decreasing (improvement = increase in AAR)
 - Is deviation of PAAR from AAR changing (improvement: PAAR and AAR closer together)

SFO

PAAR

PAAR **ATL** — Actual AAR

"Marginal" Effects of Demand Uncertainty

• Impact of Cancellation Probability

Simulation Model used to obtain results

NEXTO

"Marginal" Effects of Demand Uncertainty

• Impact of Drift

Simulation Model used to obtain results

NEXTO

Summary & Conclusions

- Demand Uncertainty can have significant impact on GDP performance
 - Drift may be most important
- No clear evidence (yet) that information improvements have led to actual uncertainty reduction benefits
 - Further analysis necessary
 - Impact of recent initiatives: SCS, pop-up policy, etc.
- Alternative PAAR-setting policies may prove beneficial
 - Further Analysis of optimization models