Terminal Area Arrival PDF Metrics for the Modeling of the Safety - Throughput Trade-Off Analysis

Y. Xie, J. Shortle, G. Donohue, NEXTOR: Moving Metrics Workshop

January 28, 2004

Dept. of Systems Engineering \& Operations Research George Mason University

Fairfax, VA

What is the trade-off between safety and throughput?

Ease of
Predicting
Lower \uparrow Easier

- Airplane inter-arrival time
- Wake-normalized inter-arrival time
- Prob (simultaneous runway occupancy)

Higher \downarrow Difficult • Prob (collision), Prob (vortex accident) Metric
Relevance

Key Issues

- Metrics that matter the most are the most difficult to predict
- "Pseudo" metrics give indication of safety but not proof of safety

Common approach: Fix safety, maximize throughput

- Our approach:
- Safety metrics are random
- Safety / throughput are tightly coupled

Atlanta Runway 27

March 5 2002, VMC

Total Observations: 102
\# of Arrivals / Hr: 31
Representative velocity assumed for each class (S/L/757/H)
Haynie, R.C. 2002. Ph.D. Dissertation, George Mason University.

Atlanta Runway 27

357 observations, VMC

Relative inter-arrival time $(\mathrm{sec})=$ Actual inter-arrival time - separation standard Haynie, R.C. 2002. Ph.D. Dissertation, George Mason University.

Frequency

Key Assumptions

- Many safety metrics have associated PDF's
- Possibly implies non-zero probability of constraint violation
- Mean and shape of PDF may shift as function of throughput

Objective

- Construct model to explain observed inter-arrival PDF
- Analyze safety / throughput trade-off with prev. assumptions
- Results are qualitative predictions
- Insufficient current data to provide accurate quantitative predictions

Steps

Feeding Controller

- Runway assignment
- Assign runway to balance load
- Sequence aircraft

- Compute expected time to reach final approach
- Sequence aircraft based on first to final approach
- Space aircraft to pass final approach gate
- Target arrival time (at final approach gate) =

Maximum (flight time, target arrival time of prev. plane + separation standard)

- Airctaft at final approach gate
- Actual arrival time $=$ Target arrival time + noise

Separation Standard at Threshhold

Time (sec) and Distance (nm)

Leader \backslash Trailer	Heavy	B757	Large	Small
Heavy	$99(4 \mathrm{~nm})$	$129(5 \mathrm{~nm})$	$129)(5 \mathrm{~nm})$	$166)(6 \mathrm{~nm})$
B757	$99(4 \mathrm{~nm})$	$103(4 \mathrm{~nm})$	$103)(4 \mathrm{~nm})$	$138(5 \mathrm{~nm})$
Large	$62(2.5 \mathrm{~nm})$	$64(2.5 \mathrm{~nm})$	$64(2.5 \mathrm{~nm})$	$111)(4 \mathrm{~nm})$
Small	$62(2.5 \mathrm{~nm})$	$64(2.5 \mathrm{~nm})$	$64(2.5 \mathrm{~nm})$	$69(2.5 \mathrm{~nm})$

\bigcirc

$$
=\text { Far - separated }
$$

others $=$ Near - separated

Aircraft Speed Matrix (knots)

Speed(knots)\Category	Heavy		Large		B757		Small	
	Mean	Std.Dev	Mean	Std.Dev	Mean	Std.Dev	Mean	Std.Dev
Final Approach Gate	$\mathbf{1 7 5}$	7.8	$\mathbf{1 5 5 . 5}$	7.8	$\mathbf{1 6 9}$	5.8	$\mathbf{1 5 2}$	4
Runway Threshold	$\mathbf{1 4 5}$	5.8	$\mathbf{1 4 0}$	5.8	$\mathbf{1 4 0}$	3.8	$\mathbf{1 3 0}$	4

Atlanta

A. Inter-arrival Time (sec)

stream	mean	Std.dev	\# of data points
Northeast	199	195	908
Northwest	232	269	818
Southwest	354	405	541
Southeast	252	256	721

B. Flight Time to Final Approach (sec)

stream	mean	Std.dev	\# of data points
Northeast	563	79	911
Northwest	780	133	821
Southwest	673	95	544
Southeast	548	94	724

Simulation Results with

Standard Separation Matrix

Inter-arrival Time at Threshhold (sec)

Haynie's Observations, 2002

Inter-arrival Time at Threshhold (sec)

Haynie, R.C. 2002. Ph.D. Dissertation, George Mason University.

Table 5. Reduced Separation

Trailer	Heavy	B 757	Large	Small
Leader				
Heavy	83 $(3.3 \mathrm{~nm})$	83 $(3.2 \mathrm{~nm})$	83 $(3.2 \mathrm{~nm})$	83 $(3 \mathrm{~nm})$
B757	83 $(3.3 \mathrm{~nm})$	83 $(3.2 \mathrm{~nm})$	83 $(3.2 \mathrm{~nm})$	83 $(3 \mathrm{~nm})$
Large	67 $(2.7 \mathrm{~nm})$	70		
$(2.7 \mathrm{~nm})$	83			
$(3.2 \mathrm{~nm})$	83 $(3 \mathrm{~nm})$			
Small	67 $(2.7 \mathrm{~nm})$	70		
$(2.7 \mathrm{~nm})$	$(2.7 \mathrm{~nm})$	70 $(2.5 \mathrm{~nm})$		

Basic change: Less difference between near and far separated aircraft

Simulation Results
with Hypothetical Separation Matrix

Inter-arrival Time at Threshhold (sec)

Haynie's Observations, 2002

- Baseline: 58 arrivals / hour (for two runways)
- Lighter- than- baseline cases:
- $0.1,0.25,0.5$, and 0.75 times baseline level;
- Heavier- than- baseline cases:
$-1.25,1.35,1.45,1.55,1.75,1.85$, and 2 time baseline level

Comparison of Light and Heavy Traffic Volumes

Inter-Arrival Time

Inter-Arrival Time

Prob (Simultaneous Runway Occupancy)

Normalized Arrival Rate (relative to baseline)

Separation Strategy
Prob (Simultaneous
Runway Occupancy)
(

Error bars not shown
Normalized Arrival Rate (relative to baseline)

- Inter-arrival time PDF explained from two key dynamics:
- Inherent noise in control system
- Arrival process
- Left tail of PDF drives safety
- Safety / Throughput Model
- Uses PDF's to model separation standards (vs. hard constraints)
- Controller agents (can model safety / throughput coupling)
- Increasing throughput increases probability in left tail
- In adaptive controller model, this effect is much worse
- Quantitative power of such models would greatly benefit from automated data collection:
- Airplane threshhold arrival time, speed, type

Backup Slides

Example Study: ATL

Haynie, R.C. 2002. Ph.D. Dissertation, George Mason University.

Buta

Haynie, R.C. 2002. Ph.D. Dissertation, George Mason University.

Dranamputatom

Aircraft Type	Threshold	Leave	Runway
Heavy	10:23:14		10:24:04
Large	-10:24:28		10:25:13
Large	10:26:16		10:27:12
Small	10:28:32		10:29:28

Inter-Arrival Time (IAT)

Wake Vortex Separation Standard
Large following Large (2.5 Nm)
(2.5 Nm / (140 knots / $3600 \mathrm{sec} / \mathrm{hr})$)

Airport	Days	Observations	Weather
Atlanta (ATL)	3	765	VMC
LaGuardia (LGA)	3	584	VMC / IMC
Baltimore (BWI)	2	135	IMC

One formal simultaneous runway occupancy

Several "near" simultaneous runway occupancies

When	Where	Leader\Exit_time	TrailerlThr_time
5,Mar,2002	ATL 26L	Largel8:22:06	Largel8:22:06
5,Mar,2002	ATL 26L	Large 18:22:50	Large 8 8:22:50
5,Mar,2002	ATL 26L	Small 9:05:32	Largel9:05:30
5,Mar,2002	ATL 26L	Large\1:16:04	Large\1:16:04
6,Mar,2002	ATL 26L	Largel2:43:32	Heavyl2:43:32
6,Mar,2002	ATL 26L	B75718:35:06	Largel8:35:06

Out of 364 valid data points

