Terminal Area Arrival PDF Metrics for the Modeling of the Safety - Throughput Trade-Off Analysis

Y. Xie, J. Shortle, G. Donohue, NEXTOR: Moving Metrics Workshop January 28, 2004

Dept. of Systems Engineering & Operations Research George Mason University Fairfax, VA



### What is the trade-off between safety and throughput?





- Metrics that matter the most are the most difficult to predict
- "Pseudo" metrics give *indication* of safety but not *proof* of safety

### **Modeling Approach**

**Common approach:** Fix safety, maximize throughput

• Our approach:

REPORTAN AN

- Safety metrics are random
- Safety / throughput are tightly coupled

![](_page_3_Figure_5.jpeg)

![](_page_4_Figure_0.jpeg)

Observation # (3.25 hours collection time)

- Total Observations: 102
- # of Arrivals / Hr: 31

Representative velocity assumed for each class (S/L/757/H)

Haynie, R.C. 2002. Ph.D. Dissertation, George Mason University.

![](_page_5_Figure_0.jpeg)

Relative inter-arrival time (sec) = Actual inter-arrival time – separation standard Haynie, R.C. 2002. Ph.D. Dissertation, George Mason University.

![](_page_6_Figure_0.jpeg)

![](_page_7_Picture_0.jpeg)

![](_page_7_Picture_1.jpeg)

### Key Assumptions

- Many safety metrics have associated PDF's
  - Possibly implies non-zero probability of constraint violation
- Mean and shape of PDF may shift as function of throughput

### **Objective**

- Construct model to explain observed inter-arrival PDF
- Analyze safety / throughput trade-off with prev. assumptions
- Results are <u>qualitative</u> predictions
  - Insufficient current data to provide accurate quantitative predictions

![](_page_8_Figure_0.jpeg)

# **Controller / Pilot Model**

![](_page_9_Figure_1.jpeg)

- Runway assignment
  - Assign runway to balance load
- Sequence aircraft
  - Compute expected time to reach final approach
  - Sequence aircraft based on first to final approach
- Space aircraft to pass final approach gate
  - Target arrival time (at final approach gate) = Maximum (flight time, target arrival time of prev. plane + separation standard)
- Airctaft at final approach gate
  - Actual arrival time = Target arrival time + noise

![](_page_10_Picture_0.jpeg)

## **Separation Matrix**

### **Separation Standard at Threshhold**

Time (sec) and Distance (nm)

| Leader \ Trailer | Heavy      | <b>B</b> 757     | Large      | Small            |
|------------------|------------|------------------|------------|------------------|
| Heavy            | 99 (4nm)   | 129 (5nm)        | 129 (5nm)  | <b>166</b> (6nm) |
| B757             | 99 (4nm)   | <b>103</b> (4nm) | 103 (4nm)  | 138 (5nm)        |
| Large            | 62 (2.5nm) | 64 (2.5nm)       | 64 (2.5nm) | (111)(4nm)       |
| Small            | 62 (2.5nm) | 64 (2.5nm)       | 64 (2.5nm) | 69 (2.5nm)       |

 $\bigcirc = Far - separated$ others = Near - separated

| Speed(knots)\Category | Heavy |         | Large |         | B757 |         | Small |         |
|-----------------------|-------|---------|-------|---------|------|---------|-------|---------|
|                       | Mean  | Std.Dev | Mean  | Std.Dev | Mean | Std.Dev | Mean  | Std.Dev |
| Final Approach Gate   | 175   | 7.8     | 155.5 | 7.8     | 169  | 5.8     | 152   | 4       |
| Runway Threshold      | 145   | 5.8     | 140   | 5.8     | 140  | 3.8     | 130   | 4       |

#### **Aircraft Speed Matrix (knots)**

![](_page_11_Picture_0.jpeg)

![](_page_11_Figure_1.jpeg)

#### A. Inter-arrival Time (sec)

Atlanta

| stream    | mean | Std.dev | # of data points |
|-----------|------|---------|------------------|
| Northeast | 199  | 195     | 908              |
| Northwest | 232  | 269     | 818              |
| Southwest | 354  | 405     | 541              |
| Southeast | 252  | 256     | 721              |

REEDOM AND LEARNIN

#### B. Flight Time to Final Approach (sec)

| stream    | mean | Std.dev | # of data points |
|-----------|------|---------|------------------|
| Northeast | 563  | 79      | 911              |
| Northwest | 780  | 133     | 821              |
| Southwest | 673  | 95      | 544              |
| Southeast | 548  | 94      | 724              |

![](_page_12_Picture_0.jpeg)

![](_page_12_Figure_1.jpeg)

![](_page_12_Figure_2.jpeg)

Haynie, R.C. 2002. Ph.D. Dissertation, George Mason University.

![](_page_13_Picture_0.jpeg)

![](_page_13_Picture_1.jpeg)

Table 5. Reduced Separation

| Trailer | Heavy   | B757    | Large   | Small   |
|---------|---------|---------|---------|---------|
| Leader  |         |         |         |         |
| Heavy   | 83      | 83      | 83      | 83      |
| -       | (3.3nm) | (3.2nm) | (3.2nm) | (3nm)   |
| B757    | 83      | 83      | 83      | 83      |
|         | (3.3nm) | (3.2nm) | (3.2nm) | (3nm)   |
| Large   | 67      | 70      | 83      | 83      |
|         | (2.7nm) | (2.7nm) | (3.2nm) | (3nm)   |
| Small   | 67      | 70      | 70      | 70      |
|         | (2.7nm) | (2.7nm) | (2.7nm) | (2.5nm) |

Basic change: Less difference between near and far separated aircraft

## **Model Output**

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

![](_page_15_Picture_0.jpeg)

- *Baseline*: 58 arrivals / hour (for two runways)
- *Lighter- than- baseline* cases:
  - 0.1, 0.25, 0.5, and 0.75 times baseline level;
- *Heavier- than- baseline cases:*

- 1.25, 1.35, 1.45, 1.55, 1.75, 1.85, and 2 time baseline level

![](_page_16_Picture_0.jpeg)

### **Light / Heavy Traffic**

Comparison of Light and Heavy Traffic Volumes

![](_page_16_Figure_3.jpeg)

![](_page_17_Figure_0.jpeg)

Normalized Arrival Rate (relative to baseline)

# **Adaptive Controller Model**

![](_page_18_Figure_1.jpeg)

REEDOM AN

# **Comparison of Controller Models**

#### Prob ( Simultaneous Runway Occupancy )

![](_page_19_Figure_2.jpeg)

Normalized Arrival Rate (relative to baseline)

Error bars not shown

REEDOM AND LEARNIN

RGU

![](_page_20_Picture_0.jpeg)

- Inter-arrival time PDF explained from two key dynamics:
  - Inherent noise in control system
  - Arrival process
  - Left tail of PDF drives safety
  - Safety / Throughput Model
    - Uses PDF's to model separation standards (vs. hard constraints)
    - Controller agents (can model safety / throughput coupling)
  - Increasing throughput increases probability in left tail
    - In adaptive controller model, this effect is much worse
  - Quantitative power of such models would greatly benefit from automated data collection:
    - Airplane threshhold arrival time, speed, type

![](_page_21_Picture_0.jpeg)

# **Backup Slides**

![](_page_22_Figure_0.jpeg)

Haynie, R.C. 2002. Ph.D. Dissertation, George Mason University.

![](_page_23_Figure_0.jpeg)

Haynie, R.C. 2002. Ph.D. Dissertation, George Mason University.

![](_page_24_Figure_0.jpeg)

![](_page_25_Picture_0.jpeg)

| Airport         | Days | Observations | Weather   |
|-----------------|------|--------------|-----------|
| Atlanta (ATL)   | 3    | 765          | VMC       |
| LaGuardia (LGA) | 3    | 584          | VMC / IMC |
| Baltimore (BWI) | 2    | 135          | IMC       |

Haynie, R.C. 2002. Ph.D. Dissertation, George Mason University.

![](_page_26_Picture_0.jpeg)

## **Observed Runway Incursions**

#### **One formal simultaneous runway occupancy**

| When       | Where   | Leader\Exit_time | Trailer\Thr_time |         |
|------------|---------|------------------|------------------|---------|
| 5,Mar,2002 | ATL 26L | Large\8:27:31    | B757\8:27:17     | -14 sec |

#### Several "near" simultaneous runway occupancies

| When       | Where          | Leader\Exit_time | Trailer\Thr_time |
|------------|----------------|------------------|------------------|
| 5,Mar,2002 | <b>ATL 26L</b> | Large\8:22:06    | Large\8:22:06    |
| 5,Mar,2002 | <b>ATL 26L</b> | Large\8:22:50    | Large\8:22:50    |
| 5,Mar,2002 | <b>ATL 26L</b> | Small\9:05:32    | Large\9:05:30    |
| 5,Mar,2002 | <b>ATL 26L</b> | Large\1:16:04    | Large\1:16:04    |
| 6,Mar,2002 | <b>ATL 26L</b> | Large\2:43:32    | Heavy\2:43:32    |
| 6,Mar,2002 | <b>ATL 26L</b> | B757\8:35:06     | Large\8:35:06    |

#### Out of 364 valid data points