Performance Metrics for Oceanic Air Traffic Management

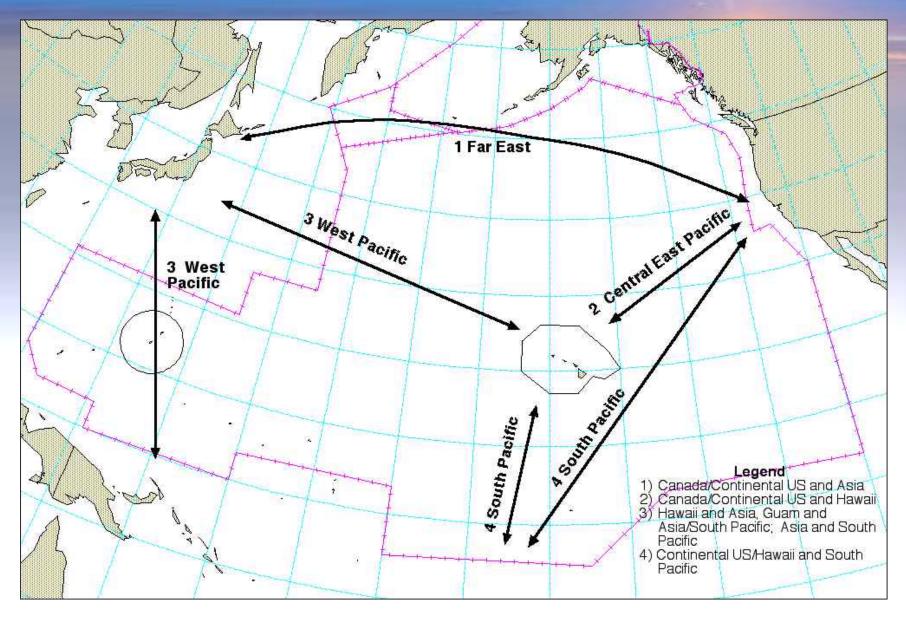
Moving Metrics Conference Pacific Grove, California January 29, 2004 Oceanic Metrics Team

Agenda

Hetrics Team

- Michele Merkle, FAA AUA-600
- Lynne Hamrick, MITRE/CAASD
- Yueh-Shiou Wu, MITRE/CAASD
- Tamara Karakis, CSSI
- Introduction: Purpose & Background of Oceanic Air Traffic Control (ATC)
- *Hackground of Oceanic Metrics*
- → Air Carrier Meetings
- > Oceanic Metrics Overview
- → Metrics Based on Priorities
- Sample Dashboard Charts
- Current Challenges Related to Oceanic Metrics
- > Baseline Performance Results
- → Summary

Introduction


Purpose of Briefing

- Provide an overview of oceanic performance metrics
- Describe challenges related to measuring oceanic Air Traffic Control (ATC) service qualities
- Discuss initial results and trends


+ Background of Oceanic Air Traffic Control (ATC)

- Non-radar procedural separation
- Communications via
 - Controller-Pilot Data Link (CPDLC) for Future Air Navigation System 1/A (FANS 1/A)-equipped aircraft
 - > High Frequency (HF) Radio Operator for non-equipped aircraft
- Oakland Oceanic Center (ZOA) controls 21.3 million square miles
- New York Oceanic Center (ZNY) controls 3.3 million square miles

Oakland Oceanic Airspace

New York Oceanic Airspace

Background of Oceanic Metrics

- + 1993 Government Performance and Results Act (GPRA)
 - Required federal agencies to measure their performance and effectiveness
- FAA moves towards Performance Based Organization (PBO) and Air Traffic Organization (ATO) formed
 - Goal to develop a more efficient and businesslike air traffic system
 - AUA goal to continue improving oceanic service, while measuring the effect of new automation/procedures on the service provided

Air Carrier Meetings

- + Onsite Air Carrier Meetings in 1999 and 2003
 - Dialogue with air carriers coordinated via Air Transport Association (ATA) meeting
 - Onsite air carrier visits in 1999 and 2003
 - Air Canada Corporation, American Airlines, Continental Airlines, Delta Airlines, Federal Express Corporation, Northwest Airlines, United Airlines, United Parcel Service Corporation, US Airways Corporation
 - Air Carrier Personnel
 - Operational Analysts, Dispatchers, Meteorologists, Pilots, Instructors, ATC, Operational Managers

> Summary of Air Carriers Visits

- Received an overview of air carrier operations
 - operating environment, route structure, fleet mix
- Consolidated and compared lists of priorities
- Discussed data sources
- Established baseline metrics

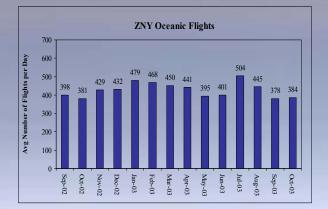
Oceanic Metrics Overview

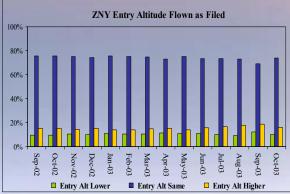
Purpose of the "Dashboard"

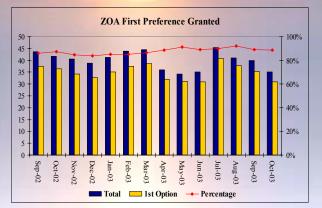
- Provides visual summary of performance of pertinent metrics for facility and airspace regions within the Flight Information Region (FIR)
- Tracks customer demand and level of service provided by the FAA oceanic ATC
- Establishes baseline to determine affect of automation and/or procedure changes (e.g., Advanced Technology and Oceanic Procedures or ATOP)
- Identify anomalies and areas that need more tracking
- Provide monthly charts for monitoring trends in oceanic service qualities
- Established data exchange process with Centers
 - Primary data source: Oceanic Display and Planning System (ODAPS)
 - Other data sources: Oceanic Data Link (ODL), Track Advisory (TA)
- Generated programs to process and analyze data
 - Oceanic Data Repository (ODR)
 - Oceanic Analysis Tool Set (OATS)
 - Oceanic Metrics Generator (OMG)

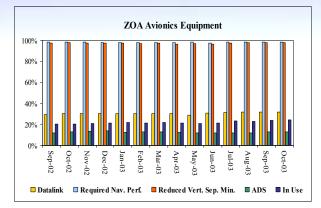
Metrics Based on Priorities

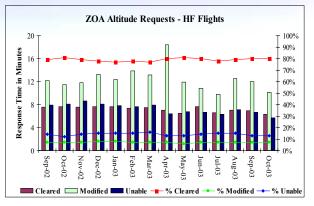
+ Air Carrier Priorities and Oceanic Metrics

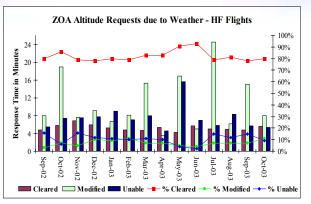

Air Carrier Priorities	Metrics	Data Availability and Sources
Operating Environment	 →Flight count →Avionics equipment →Fleet mix 	<i>Available</i> →Flight Plans from ODAPS
Communication	 Avionics equipment Altitude requests Response times 	Available → Flight Plans from ODAPS → HF messages from ODAPS → CPDLC messages from ODL
Safety	 →Operational errors →Altitude requests due to WX →Deviation requests 	Available → AAT-200 → HF messages from ODAPS → CPDLC messages from ODL
<i>Efficiency - Flexibility</i> →Requests Granted	 →Altitude requests granted →Response time 	Available → Plans from ODAPS → HF messages from ODAPS → CPDLC messages from ODL


Metrics Based on Priorities (Continued)


+ Air Carrier Priorities and Oceanic Metrics


Air Carrier Priorities	Metrics	Data Needed
<i>User Satisfaction -</i> <i>Predictability</i> →Optimal vs. Actual →Planned vs. Actual	 →First preference granted →Entry altitude flown as filed 	Available → Flight Plans from ODAPS → Position reports from ODAPS → Track Advisory reports
User Satisfaction - Predictability →Delay / On-time Performance		 In Development with Aviation System Performance Metrics (ASPM) and Enhanced Traffic Management System (ETMS) → Planned departure and arrival times → Actual departure and arrival times
<i>User Satisfaction</i> →Fuel Consumption		<i>In Development</i> → Preferred route and altitude in ICAO Flight Plan (FPL) vs. Actual route and altitude flown

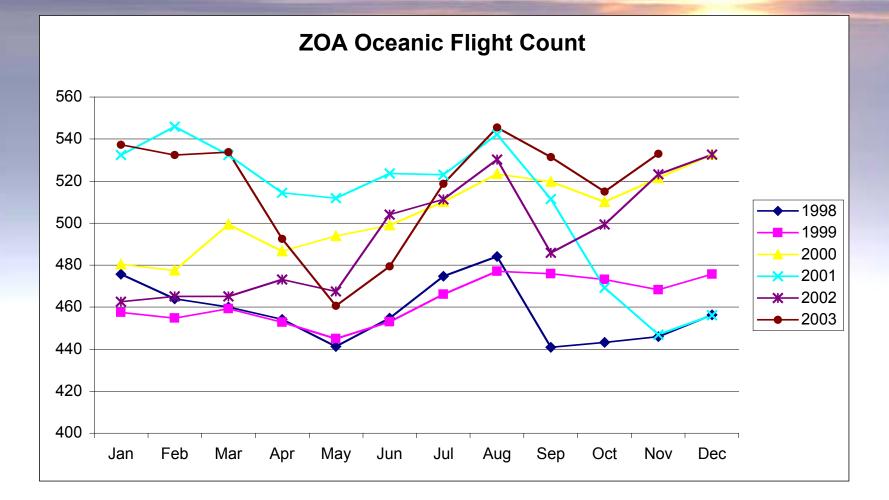

Sample Dashboard Charts



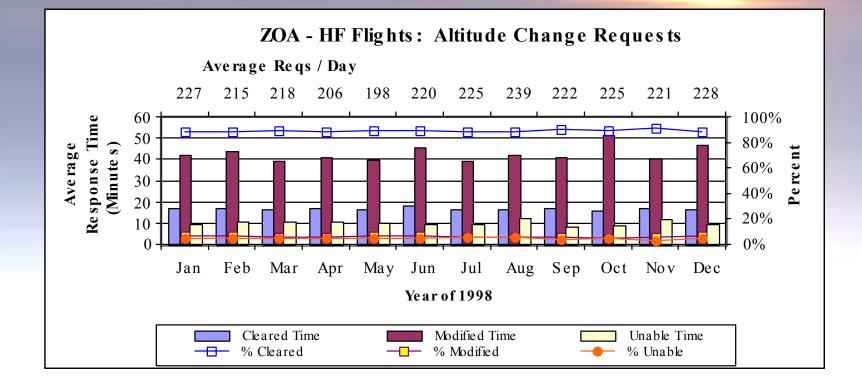
Current Challenges Related to Oceanic Metrics

- US oceanic performance metrics are affected by actions taken by non-US oceanic ATC
- > Limited end-to-end data available
- Variations in operations and priorities across different geographic and domain sub-regions
- > Processing HF messages

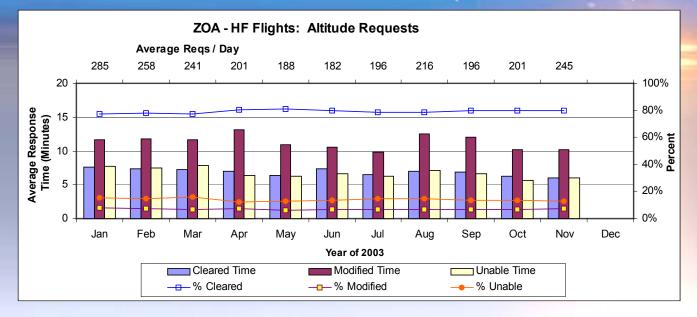
Baseline Performance Results

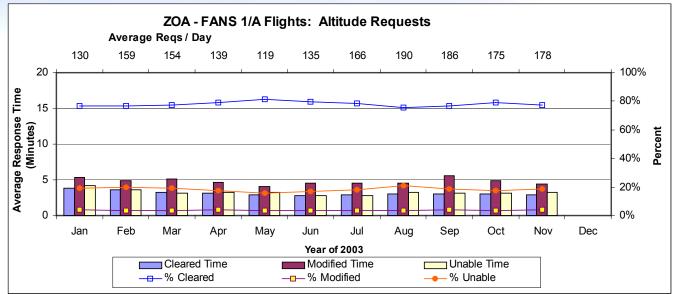

> Trends observed

- Response time for HF flights are longer than that for FANS 1/A flights
- Percent of positive or negative response to request are basically the same regardless of the aircraft communication capabilities (i.e., FANS 1/A or HF)
- Daily traffic varies more than 30% (e.g., May and August); but variation of performance level is small
- Most flights (80%) received preferred entry altitude for New York airspace or first preference for the Pacific Organized Track System (PACOTS)
- Average response time to altitude change requests has decreased from 10-50 minutes in 1998 to 5-15 minutes for HF flights and 3-6 minutes for FANS 1/A flights in 2003


Plausible reasons for the above trends

- Introduction of data link not only allow FANS 1/A flights to communicate with ATC faster, it also reduced congestion on the channel allowing HF flights to get better services
- Oceanic Data Link enhanced controller productivity for all flights, not just FANS 1/A flights
- Whether a positive response can be granted is dependent on traffic situation, not on communication means
- Implementation of Reduced Vertical Separation Mimima (RVSM) allowed more flights to fly their preferred altitude profile
- > Sample slides follow


Baseline Performance Results (Continued)



Baseline Performance Results (Continued)

Baseline Performance Results (Concluded)

Summary

Oceanic Performance Metrics

- Assesses the operating environment and quality of oceanic service provided to the airspace users
 - Summary of performance
 - > Tracks customer demand and level of service provided
- Provides a foundation for making sound business decisions
 - Baseline comparison
 - Anomalies
 - > Trends
- Oceanic Metrics are evolving and expanding to meet the challenges of measuring a complex system and the performance of ATC service in a meaningful way
 - Different data sources (e.g., ATOP is replacing ODAPS and ODL)
 - Additional facilities (e.g., Anchorage)
 - Changing priorities