

Flexibility and Predictability in Management of Convective Weather Impacts on the NAS

Jim Evans

Senior Staff

MIT Lincoln Laboratory

Visiting Industrial Fellow

University of California, Berkeley

NEXTOR Asilomar 2004- 1 2/4/2004 MIT Lincoln Laboratory =

- Why do we care?
 - Delays
 - Metrics implications
- Overall FAA/airline weather impact mitigation process
 - Ability to predict weather impact with sufficient lead time is poor
- Insights from the CIWS benefits assessment
- How can we achieve a higher degree of predictability through increasing flexibility in ATM during adverse weather
- Metrics and system design implications

- Airlines seek to reliably and economically deliver the desired product
 - Predictability is essential to airline network design and operation
 - Want flexibility to make adjustments to address problems and handle flight specific issues (e.g., high value connections)
 - Use of off ATC-preferred routes as a key flexibility index
- Initiatives underway to improve information transfer and navigation capability seek to provide a more predictable system for scheduling and increase flexibility
 - But predictability and flexibility are very hard to achieve when major capacity losses occur "randomly"
- Need to improve system design and develop better metrics capabilities

Trends in Aviation Delays

Air Traffic Congestion

Air Traffic 09/12/02 1000 UTC - 09/13/02 **ATC chokepoints** 1000 UTC 50[°] N Detroit NY Metro Cleveland Chicago Pittsburgh 40[°] N Philadelphia 6 7 DC Metro Indianapolis Cincinnati 30[°] N Raleigh-Durham Nashville 60 80 100 20 40 120[°] W 110[°] W 100[°] W 90[°] W 80° W 70[°] W

[from FAA 2002 Airport Capacity Enhancement (ACE) Plan]

Increased use of point-to-point flights (versus hubs) and use of alternative airports increases en route congestion and hence, difficulty in providing flexibility and predictability when adverse weather occurs

• MIT Lincoln Laboratory =

NEXTOR Asilomar 2004- 5 2/4/2004

NEXTOR Asilomar 2004- 6 2/4/2004

- Why do we care?
 - Delays
- Overall FAA/airline weather impact mitigation process
 - Ability to predict weather impact with sufficient lead time is poor
- Insights from the CIWS benefits assessment
- How can we achieve a higher degree of predictability through increasing flexibility in ATM during adverse weather
- Metrics and system design implications

Weather Impact Mitigation Paradigm

"Success" in FAA/airline context = executed an appropriate weather impact mitigation plan

Must execute the decision loop on a time scale compatible with lead time for accurate forecasts

MIT Lincoln Laboratory

FAA/Airline "Spring 2K" Planning

CCFP Coverage vs Actual Coverage

CCFP - 2002, Lead = 4 hr

(statistics for 2003 are similar)

- Why do we care?
 - Delays
- Overall FAA/airline weather impact mitigation process
 - Ability to predict weather impact with sufficient lead time is poor
- Insights from the CIWS benefits assessment
- How can we achieve a higher degree of predictability through increasing flexibility in ATM during adverse weather

MIT Lincoln Laboratory

• Metrics and system design implications

Corridor Integrated Weather System (CIWS) Products

MIT Lincoln Laboratory

NEXTOR Asilomar 2004- 12 2/4/2004

CIWS Benefits Assessment

CIWS 2003 Operational Benefits

Route Impacts / Traffic Flow Management		Benefits from Randomly Chosen Instances of Routes Kept Open
CIWS Benefit	Times/year	FacilityDatesDirect Delay (Hrs)ZAU4/306/2614106
•Jet routes kept open or reopened earlier	699	ZID 6/10 7/10 7/23 1 70 5
Proactive, efficient reroutes	501	ZOB 5/8 7/6 8/3 4 18 189
Directing pathfinders	300	ZDC 7/22 7/23 9/3 8 3 29
Identifying opportunities to fly over storms	109	ZBW 6/11 8/5 3 7
Delay savings > \$ 110 M per year		ZNY 6/12 8/5 2 49
Other uses being quantified:		Annual benefit using above instances to
Better use of delay programs More departures during severe wx Reduced MIT restrictions		estimate mean benefits: 42,457 hours ~ \$ 178 M (including passenger time)

Examples of Different Cases

Low benefit – J80 blocked in IL

High benefit: few other usable E-W routes

MIT Lincoln Laboratory

Understandings from CIWS Study

- Delays and benefits varied greatly for nominally similar "local" convective situations due to queues and overall network context
 - Queue delay is very sensitive to demand, fair <u>and</u> bad weather capacity, and time duration of bad weather
 - Need a very detailed knowledge of weather locations and 3D structure to accurately assess impact of weather
- System design implications
 - Predictions of ATC impact of storms hours in advance are likely to have a very wide range of possibilities for ATC impact
 - Need to focus on options for maximizing flexibility to respond to rapidly changing situations
- Metrics implication: will be very hard to normalize for weather effects of different weather (and forecasts) in delay comparison

• MIT Lincoln Laboratory =

- Why do we care?
 - Delays
- Overall FAA/airline weather impact mitigation process
 - Ability to predict weather impact with sufficient lead time is poor
- Insights from the CIWS benefits assessment
- How can we achieve a higher degree of predictability through increasing flexibility in ATM during adverse weather
- Metrics and system design implications

Flexibility in Transcon Routing

NEXTOR Asilomar 2004- 18 2/4/2004

Multi-facility Coordination for Departures

NEXTOR Asilomar 2004- 19 2/4/2004

Route Availability Planning Tool (RAPT)

Takes advantage of short lived opportunities for departures

To be added: •Aircraft specific 3D guidance

•Better support for assessing alternative routes if filed route is blocked

•Pilot/dispatch CDM

MIT Lincoln Laboratory ———

NEXTOR Asilomar 2004- 20 2/4/2004

- Convective weather impacts on congested airspace will continue to be a major problem for the NAS
 - Capacity impacts cannot be accurately predicted with the desired lead time
 - Classic "free flight" flexibility and predictability objectives will be hard to achieve
- Will need to consider developing a flexible, agile system that facilitates coping with rapidly changing problems
- Metrics implications
 - Reassessing system operations effectiveness metrics in context of flexible response to changing conditions
 - Normalization for weather and forecast differences between different time periods will require very detailed analysis + new tools