Spatial & Temporal Distribution Metrics for Airspace Design with a Complexity Constraint

Arash Yousefi George L. Donohue, Ph.D.

Air Transportation Systems Lab

George Mason University

(http://www.pluto.gmu.edu/atse)

NEXTOR Moving Metrics Conference, January 27-30, 2004

Research Sponsorship: NASA/ARC, FAA, METRON

© 2003 GMU Air Transportation Lab

Outline

- > Motivation for Research
- ➤ Definitions of Sector Workload and Complexity Index Metrics
- > Comparison of Ranked Sector CI to Actual Traffic Flows in NE
- > Application of Methodology to Optimum Sector Design
 - **■ Define Building Block unit of Sectors (Hex-Cells 24)**
 - Compute Dynamic WL and CI for CONUS and 45,000 Flight Plans
 - Directions for Future Work
- > Observations on Research to Date

- > ~85 percent of US ATCs (14,000) will be eligible for retirement over the next decade (Bureau of Labor Statistics) & lack of an adequately skilled workforce may lead to future capacity or safety problems.
- > Available radio spectrum for controller-pilot communication is limited.
- > Current airspace sectorization is not the most efficient design.
- > Establishment of baseline airspace metrics is Required for evaluating any changes resulting from new ATC systems or procedures.

Current Sectorization has Historical – Not Analytic Origins

GMU Air Transportation Lab

- ➤ Current Lack of Widely Accepted Intrinsic Metrics for airspace capacity and complexity:
 - Number of aircraft passing through a sector DOES NOT capture the real airspace complexity, (Sridhar et al., 1998).
- > ATC workload depends on Both Qualitative and Quantitative parameters.

Recent Related Work

- > Perceived complexity of an air traffic situation, (Pawlak et al., Wyndemere Inc., 1996).
 - Related to the cognitive ATC workload with or without the knowledge of aircraft intent.
 - Human oriented and subjective.
- > Dynamic Density (Laudeman et al, NASA ARC, 1998)
 - More quantitative and based on the flow characteristics.
 - Sridhar et al., 1998, developed a model to predict the evolution of this metric in the near future.
- > Delahaye et al., 2000:
 - 1. Geometric approach: Based on the properties of aircraft relevant position and speed.
 - 2. Airspace system as a dynamical system: model the history of air traffic as the evolution of a hidden dynamic system over time.
- Impact of structure on cognitive complexity, (Histon et al., 2002).
- > Much more ...

- Critical factors contribute to sector Workload and Complexity (assuming good weather conditions):
 - **Coordination factors:** required coordination actions for conflict resolution, level of aircraft intend knowledge, ...
 - Geometrical and geographical factors: sectors geometry & volume, airports, proximity of SUAs, # of neighboring sectors, # of hand in/off points, ...
 - Traffic factors: # of altitude changes, # of crossing altitude profiles, # of intersecting routes, sector transit time, fleet mix, ...
 - Encounter factors: conflict convergence angle, conflicting aircraft relative speed, separation requirements, flight phases, ...
- > A Fundamental Question:
 - "Is there a set of computable or measurable metrics that reflect the most critical factors that contribute to the sector complexity"

Sector Density & Transit Time are NOT **SUFFICIENT**

Total Transit time = $\sum_{i=1}^{n} T_{i}$ [minute/sector]

 T_i = Transit time for aircraft i in the sector. n = Total number of aircraft passing through the sector during any given time interval.

Density = Number of aircraft passing through a sector during any given time interval [aircraft/sector]

Neither of these metrics, alone, adequately estimates the level of controller activity.

a: More conflicts due to route intersection

b: More control time due to longer routes

Hypothesis: ATC Workload Metrics Can Be Adequately Simulated for Optimum Sector Design

- Use a Combination of High Fidelity Model Simulations and ATC workload metrics to Test Hypothesis
- Use a Model that Computes Human WL Metrics (TAAM) and Compare Results to Actual Flight Data
 - **Total workload:** 4 parameters (11 Sub-Parameters):
 - **1.** Horizontal Movement Workload (WL_{HM})
 - 2. Conflict Detection and Resolution Workload (WL_{CDR})
 - 3. Coordination Workload (WL_C)
 - 4. Altitude-Change Workload (WL_{AC})
- In each sector or group of sectors, the summation of these four parameters may represent the total workload.
 - **▶** Linear Assumption, MAY be NON-LINEAR

Total WL =
$$\sum (WL_{HM} + WL_{CDR} + WL_{C} + WL_{AC})$$

ATC Workload Simulation (cont.)

 \triangleright Movement or basic workload (WL_{HM}) is determined by the number of aircraft in a sector (sector density) and average transit time.

$$WL_{HM} = F_{HM} \times (N_{HM} \times T)$$
 where:
 $F_{HM} = Adjustment$ factor for horizontal movement
 $N_{HM} = Number$ of aircraft passing through the sector
 $T = Average$ Flight Time

 \triangleright The altitude-change workload (WL_{AC}) is determined by the type of sector altitude clearance request for level off, commence climb and commence descent.

$$WL_{AC} = F_{AC} \times N_{AC}$$
 where:
 $F_{AC} = Altitude$ clearance factor
 $N_{AC} = Number$ of aircraft with this clearance

ATC Workload Simulation (cont.)

- \triangleright The conflict detection & resolution workload (WL_{CDR}) is based on conflict detection using the conflict type and conflict severity.
 - The *conflict type* is determined by the tracks of the aircraft (succeeding, crossing or opposite) and the flight phases (climbing, cruising, or descending). For each type there is an adjustment factor T_{CT} .
 - The *conflict severity* is the percentage of available separation. For example if 100-120% or 80-100% of minimum separation is available. For each conflict severity, there is an associated adjustment factor defined as T_{CS} .

 $WL_{CDR} = F_{CDR} \times (T_{CDR} \times T_{CS} \times N_{CDR})$ where:

 F_{CDR} = Adjustment factor based on conflict type

 T_{CT} = Conflict type factor

 T_{CS} = Conflict severty factor

N_{CDR} = Number of aiircraft with this conflict type and severity

ATC Workload Simulation (cont.)

- \triangleright The coordination workload (WL_C) is determined by the type of coordination action including:
 - Voice Call
 - Clearance issue
 - Inter facility transfer
 - Silent transfer
 - Intra facility transfer
 - Tower transfer
 - For each of them there is a factor that reflects the complexity of that action

$$WL_C = F_C \times N_{CA}$$
 where :

 $F_C = Cordination action factor$

 N_C = Number of aircraft with this coordination action

Airspace Complexity Quantification

- ➤ Aircraft in each sector, based on the sector complexity, create different workload levels.
- For each sector, *Complexity Index (CI)* is defined as the average workload per each aircraft.
 - For a given time epoch:

$$CI = \frac{Total \ Workload}{Total \ Number \ of \ Aircraft} = \frac{\sum (WL_{HM} + WL_{CDR} + WL_{C} + WL_{AC})}{Total \ Number \ of \ Aircraft}$$

- > CI reflects critical factors that Linearly contribute to the sector complexity.
 - Could be Represented as a Non-Linear Combination
 - Could be Converted to a Cost Metric

Test Case: Simulating 5 NE Centers

- 162 Sectors and 667 Airports

Market segment	Number of daily flights
- Non-GA including Commercial, GA and Cargo (IFR) extracted from the Flight Explorer	
- General Aviation traffic (IFR and	22764
VFR) generated using economic activities between OD	7051
Total	29815

ARTCC	Number of Sectors	
ZDC	43	
ZNY	25	
ZID	34	
ZBW	19	
ZAU	41	

Total daily flights used in the simulation

CI Distribution for 5 NE Centers

- Large Variation of CI among all Sectors
- ➤ Inefficiency in sectors with low complexity?
- More Operational Errors may occur in HIGH or LOW complexity sectors

Hypothesis: An efficient airspace sectorization should Approach a uniform distribution of the complexity among all sectors.

Result: Sector Rank by CI

- > 50 (out of 162) most complex sectors in NE corridor
 - Although not rigorous, overall, less complex sectors have higher traffic volume.
 - Intuitively it can be interpreted as a good design (less complex sectors are capable to accommodate more aircraft without exceeding the controller workload thresholds).

GMU

TAAM Simulation: 50 Most Complex Sectors - Observations

Most of the complex sectors are located next to the center boundaries.

> Includes all altitude ranges.

Daily movement

【CI: mean=1.86, max=2.61, min=0.7 ᄀ。

Complexity order:

2/162

- ▶Low altitude
- ➤ Non-structured traffic
- ➤ Many track intersections
- ➤ Many inter-sector handoff points
- ➤ Burlington INTL Airport
- ➤ Many level changes for flights operating out of BTV
- ➤ Short sector transit-times at the edges

- ➤ High altitude
- ➤ Non-structured traffic
- ➤ Many track intersections
- ➤ Many inter-sector handoff points
- ➤ Indianapolis INTL & Terre Haute INTL Airports
- ➤ Many level changes for flights operating out of IND

Daily movement Low altitude and small 【CI: mean=1.86, max=2.61, min=0.7 ᄀ ় 🦋 ➤ SUA blocks sector entrance ➤ Proximity of two large airports (BWI and PHL) Complexity order: ➤ Many altitude changes 16/162 ➤ Almost structured but also many crossing traffic ➤ Short sector transit-times at the edges ZDC18 CI=2.17 ZDC18 SUA

Picture produced/using Flight Explored

Daily movement

- Structured but also many crossing traffic
- Proximity of three airports (BWI, PHL & ACY

- ➤ High altitude
- ➤ Small volume

- Daily movement
- 【CI: mean=1.86, max=2.61, min=0.7 ᄀℷ 🥻 🎉

- Proximity of two large airports (BWI and PHL)
- ➤ Proximity of SUA

CI: mean=1.86, max=2.61, min=0.7 →

Daily movement

【CI: mean=1.86, max=2.61, min=0.7 ᄀ ় 🥻

- ➤ Ultra high
- ➤ Structured traffic
- ➤ Low density
- Next to noncontrolled airspace
- ➤No SUA
- ➤ Inter-sector handoff points are concentrated

Complexity order: 161/162 ——

GMU Air Transportation Lab

Daily movement

CI: mean=1.86, max=2.61, min=0.7 ¬

Apply CI Metric and Optimization Theory to New Concepts in Airspace Design

- > Two distinct concepts:
 - 1. Using complexity measures in designing the <u>polygonal shape</u> <u>sectors</u>
 - One of the objectives is minimizing the number of sectors while WL in each sector does not exceed a certain threshold
 - Avoid concave sectors
 - 2. <u>High-Volume Tube-Shape Sectors (HTS)</u> (Initiated by university research concept team, Zellweger, et al, NASA unpublished report)
 - Like HOV lanes in the sky connecting congested airports
 - ADS-B usage
 - One or more ATCs are assigned to each HTS from origin to destination
 - Lower separation minimum
 - Eliminating ATCs distraction on trajectories.
 - Cost benefits by reducing flight distance
 - etc ...

Hex-Cells Chosen as Airspace Building Block Elements

- The airspace of 20 CONUS ARTCCs is divided to three altitude layers with 2566 cells.
- Hex-Cells are airspace elements and it is possible to compute complexity and workload metrics for each cell based on historic flight data.

Clustering Hex-Cells to Construct Sectors

 Based on OD tracks and number of daily operations in each OD pair, different layers of flights are identifiable:

A. Scheduled Flights

- I. Non-congested routes: Between low traffic OD pairs (less than 10 operations per day). = $\sim 2/3$ of total scheduled flights
- II. Congested routes: Between congested OD pairs (more than 10 operations per day). ~1/3 of total scheduled flights
- B. Non-Scheduled (~1/3 layer A)
 - I. Short range GAs
 - II. Long range GAs

- ➤ Yellow → Layer AI,
- ➤ Red → Layer All

GMU Air Transportation Lab

- ➤ Passenger share for flights in layer A is much larger than layer B
- ➤ Like interstate highways connecting large airports with higher number of operations
- ➤ In HTS's minimum separation standards are less than current values
- > They can be mono or bi directional
- > Aircraft with advanced CNS equipment are allowed to enter the tubes
- > One or more controller assigned for entire HTS from origin to destination
- > ADS-B usage

High-Volume Tube-Shape Sectors (HTS)

Example of a High-Volume Tube-Shape Sector (HTS) Network Node

HTS intersections in terminal area

Select 45,000 ETMS Flight Plan Tracts and Compute Simulated HEX-Cell WL/CI using TAAM

- For each flight ID in ETMS database there are few flight plans reported by airlines
 - 1. <u>Filed flight plan</u>: Before the ETD of each flight, airlines update the flight plan to avoid adverse weather or congested areas or
 - 2. <u>Advisories:</u> FAA issues flight plans as late as few minutes before the flight to relieve congestion or avoid adverse weather. Airlines are free to follow or decline them.
 - 3. Amended: Issued by FAA and airlines have to follow them.
 - 4. Flown: Actual flight track that aircraft have flown.
- The latest filed flight plan has been parsed to TAAM.
- Missing attributes
- ~ 45k flights on Tuesday July 02 02

```
AAL2998 B752 1 KSTL_KTPA_2 ? 01,00:00 01,01:53 1 0 S

@A KSTL

@LL N38 45 0.0 W90 22 0.0

@LL N38 51 0.0 W90 29 0.0

@LL N38 33 0.0 W89 58 0.0

@LL N37 49 0.0 W88 58 0.0

@LL N37 37 0.0 W88 42 0.0

@LL N37 32 0.0 W88 32 0.0

@LL N35 7 0.0 W86 57 0.0

@LL N31 32 0.0 W84 57 0.0

@A KTPA
```


WL Trend in Each Hex-Cell Throughout the Day

Airspace Complexity Visualization (Low)

Airspace Complexity Visualization (High)

WL Variation Within Centers (cnt.)

WL as a Continues Function of *lat*, *long* and *t*

WL Vector Fields

- > TAAM WL/CI Metric seems to properly Identify High and Low Workload Sectors
- ➤ High Fidelity Simulation Models may be useful in Evaluating Innovative new sector Design Paradigms
- ➤ Metric Flow Visualization Techniques may be used in Conjunction with Optimization Theory to Minimize High WL/CI "Hot Spots" in the ATC network that require extensive experience to deal with
 - Future Concerns for En-Route Capacity Restrictions
 - **■** Future Concern for increases in Loss-of-Separation Violations

- \triangleright Total daily flights = \sim 45k
- > Number of sectors in each run= 2566
- > Aircraft characteristics file is updated for all aircraft in ETMS
- > CD&R is ON
- **➤** Graphic is OFF
- ➤ Sim. time in a P4 processor with 2GB RAM &1G rpm HD= ~8 hours
- > Reporter run time= ~2 hours

Proposed Network Sector Design Process

WL Variation Within Centers

All Operational OD Pairs

- At least one leg in continental US and one daily operation
- Over 2000 tracks

GMU Air Transportation Lab

GMU Air Transportation Lab

European Sovereign Boundaries Produces a Similar Result

GMU Air Transportation Lab