Have FAA-Industry Windshear Investments Been Effective?: Some Observations

David Chin, Federal Aviation Administration Linda Lau, Cornell University

January 2004

Overview

- Study Objectives
- Windshear (W/S) History
 - 1982 2001: Total Accidents, Weather and Wind Shear
 - Wind Shear Accident Characteristics
- What Preventative Measures are Out There?
 - FAA and Industry Initiatives
 - Implementation Schedules
- Pre and Post Implementation Accident Rates and Trends
- Concluding Observations
- Background
 - References
 - Sources and Databases

Study Objectives

- Evaluate Mix of Ground-based and Airborne Investments
 - Did we make the right investments?
 - What are the post-implementation results?
 - Accident rates
 - By User Class

Windshear History

Accident Data Analysis: 1982 - 2001

What is Windshear?

- Windshear refers to a rapid change in wind speed or direction, or both, over a short distance. These changes create eddies, or swirls of air, that cause turbulence.
- Windshear can be both vertical and horizontal.
- Vertical windshear is caused by the winds that blast down from thunderstorms may cause severe damage as aircrafts land.
- Windshear and microbursts are usually related to convective weather.

Difference creates

turbulent eddies

*The USA TODAY Weather Book by Jack Williams

Slow wind

Comparison: Total Accidents, W/X and W/S

From 1982 to 2001

□ Out of 47,622 aircraft accidents, weather (W/X) was the contributing factor to 22.4% (11,595 accidents).

> Windshear (W/S) accounts for only 0.5% of all reported accidents

Wind Shear Accidents 1982-2001

	NAS		W/X		W/S				
Part 121 – Air Carriers									
Accidents	676		269		10				
Fatalities	3051	(4.5)	1745	(6.5)	279	(28.0)			
Part 135 – Air Taxi/Commuter									
Accidents	2394		1281		14				
Fatalities	1714	(0.7)	1312	(1.0)	15	(1.1)			
Part 91 – General Aviation									
Accidents	43930		16095		198				
Fatalities	16465	(0.4)	11202	(0.7)	53	(0.3)			

(Number in parentheses denotes the average fatalities per accident)

Wind Shear Fatalities/Injuries 1982-2001

- 347 Fatalities & 89 Serious Injuries
- 1154 Non Fatal Injuries (Serious, Minor or No Injuries)

Part	Part Fatal		Minor or None	
121	279	23	674	
135	15	6	38	
91	53	60	353	

Phase of Flight

- For Air Carriers, more W/S accidents during Landing to Takeoff phase
- For GA and AT, more accidents during Approach to Landing phase
- Approx. 50% of W/S related accidents occurred on the airport.

Part	Takeoff	Approach	Landing	Other	Total
121	3	1	4	2	10
135	1	5	4	4	14
91	26	40	80	52	198

What Preventive Measures are Out There?

Investments Initiated by FAA and Industry

- FAA Ground-Based Systems
 - Low Level Windshear Alert Systems (LLWAS)
 - Terminal Doppler Weather Radar (TDWR)
 - Weather System Processor (WSP)
- Training Programs
 - 1987 WSTA spearheaded by BOEING and UAL, eventually funded by FAA
- Regulatory Airborne Detection System
 - 1991 14 CFR Part 121.358 Low-Altitude Windshear System Equipment Requirements. (Title 14 Code of Federal Regulations Part 121.358)
 - Affects Part 121 Air Carriers.

LLWAS-1: 1-6 Wind Sensors

LLWAS-2: Std. 6 Sensor Network w/ enhanced algorithm for less false alarms Expanded LLWAS: 11-32 Sensor Network w/ improved detection capabilities TDWR: Terminal Doppler Weather Radar

WSP: Enhanced Weather capabilities for ASR-9 Radar

Training Program: Avoidance and Recovery techniques; 4 volumes

Part 121.358: Mandatory Airborne W/S alert/detect systems for part 121 11

Accident Rates and Trends

Empirical Observations of W/S Effectiveness 1982-2001

By FAA and Industry Initiatives

LLWAS Locations – Air Carrier Accident Rates

- LLWAS implemented at high risk sites
- Since LLWAS deployment (1985+), there have been no accidents at LLWAS sites

LLWAS Locations – GA Accident Rates

•Slight improvements in accident prevention with LLWAS enhancements

• Many LLWAS systems are now converted to sites with WSP (ie. ABQ)

TDWR Locations – Air Carrier Accident Rates

- TDWR implemented at high risk sites
- Since TDWR deployment (1994+), there have been no accidents at TDWR Sites
- Trend may also be affected by Training Program/Airborne Systems

TDWR Locations – GA Accident Rates

- TDWR implemented at high risk sites
- Since TDWR deployment (1994+), there have been no accidents at TDWR sites

WSP Locations – GA Accident Rates

• WSP implemented at high risk sites (ie. ABQ – 6 GA accidents)

By Phase of Implementation

Summary

Observations

- For Windshear Sites
 - Windshear systems are deployed at high risk sites
 - GA accident rate remains relatively unchanged
 - At LLWAS-E, TDWR and WSP sites, no Part 121 and 135 accidents have occurred since deployment.

For NAS-wide

- General accident trend for Part 121 and Part 135 is decreasing
- Accident rate is lower after the Training program and airborne systems were implemented
- ➡ Mix of Investment strategies mitigate Windshear risk.
- ➡ Training program and avionics have been effective at non-ground-based Windshear sites

- \Rightarrow Invested in the right sites
- GA Users not benefiting from Windshear initiatives compared to AC & AT
- \Rightarrow Windshear systems have been effective

Background

References

- 1999: Low Level Wind Shear Alert System Study (RAP, NCAR, UCAR).
- 1998: NTSB Weather Related Accident Study. (NASDAC)
- 1996: Low Altitude Windshear: A 15-Year Retrospective. (John McCarthy)
- 1996: Performance Metrics for NAS 2.0 Architecture Safety Analysis: Wind Shear Related Accidents & Incidents
- 1992: Integrated Wind Shear Systems Cost-Benefit and Deployment Study. (Martin Marietta Air Traffic Systems)

Sources and Databases

- NTSB National Transportation Safety Board Accident Database (1982-2002)
 - 47,622 Accident Reports 239 W/S related
- TAF Terminal Area Forecasts (1976-2001)
 - Traffic operations for 3508 Airports (for NAS)
 - 447 Airports with Air Carrier Operations
- FSEP Facility Service and Equipment Profile
 - Commissioning dates for:
 - Low level Windshear Alert System (LLWAS)
 - Terminal Doppler Weather Radar (TDWR)
 - Weather System Processor (WSP)