Free Flight En Route Metrics

Mike Bennett The CNA Corporation

- FAA
 - Dave Knorr, Ed Meyer, Antoine Charles, Esther Hernandez, Ed Jennings
- CNA Corporation
 - Joe Post, Mike Bennett, James Bonn, Dan Howell, Ashish Khatta, Dan Murphy, Tony Rubiera
- JTA
 - Dale Peterman, Dave Bartlett
- DI
 - Ed Freeman
- Other Support
 - NEXTOR, Northrup/Grumman, MITRE/CAASD, RPI, Aerospace

- Free Flight Tools
 - URET
 - TMA
 - CPDLC
 - CDM

- Estimate potential benefits pool
- Future benefits projection
 - Investment Analyses
 - OMB Exhibit 300
- Post-implementation measurement of impact

Tie projected benefits to observable metrics	Observed	Modeled
<pre>Excess distance (compared to great circle) > Primary metric for en route</pre>		
Flight times Wind-adjusted		
Excess distance and flight time by phase of flight "Lines data"		
Flight Plan Amendments Distance savings from amendments		
En Route Throughput "Hoses data"		
Delay Ground, Airborne		

- Wind-optimal is the most efficient trajectory
 - Computationally intensive
 - Availability of wind data
 - Moving target
- Are great circle routes a good proxy for windoptimal?

Potential Benefits Pool: 370,000 nmi per day Is all of that pool recoverable?

January 29, 2004

Use FACET to identify conflicts and provide geometry and aircraft speeds

Numerically solve for minimum conflict cost

Buffer	Cost of Conflict	Pool Reduction	Adjusted Pool
5 nmi	1.4 nmi	6%	310K nmi/day (\$700M/yr)
10 nmi	3.6 nmi	16%	345K nmi/day (\$790M/yr)

Source: D. Howell, J. Bonn

January 29, 2004

A Framework to approach En Route Improvements

Percent of maximum center traffic

- As URET is deployed, we track
 - Number of flight plan amendments
 - Distance savings from lateral amendments
- Periodically update benefits estimates
 - Free Flight Reports, OMB Exhibit 300

Source: D. Murphy

Important to establish site-specific baselines

- ZOA has higher traffic levels
 - handles a higher proportion of arrivals and departures than ZAB

Percent of maximum center traffic

- Break up flight into segments
- Track excess distance, flight time, degrees turned
 - Algorithm developed and coded at Free Flight
 - ATALAB generated archive for all flights since 1998
 - Subset available in ASPM

- Construct throughput lines ("hoses") that capture major traffic flows
- Measure throughput over lines
 - Also track crossing time and position by flight
- Algorithm developed by Free Flight and OEP
 - Coded at Free Flight
 - ATALAB generated archive for all flights since 1998

En Route Throughput and Departure Delay

January 29, 2004

- En Route problems manifest themselves in several ways
 - Excess distance, departure delay, MIT, Ground stops
- Difficult to separate en route problems from terminal effects
- Current queuing models have shortcomings
 - Don't deal well with all constraints
 - TRACON capacity
 - No modeling of airspace performance when demand < capacity
 - No "Opportunity" regime
 - Trajectories are non-adaptive
 - Tactical (Local congestion, weather)
 - Strategic (TFM)

Here's what we'd like to see a model do...

- Free Flight uses several en route metrics
 - Projections of future benefits
 - Assessment of deployed tools
- Our approach
 - Need to understand magnitude of problem (size of pool)
 - Tie projected benefits to observable metrics
 - Establish site-specific metrics baselines
- Need better en route models

 Use line data to look at excess distance for flights encountering busy sectors

Encountering a single busy sector seriously affects excess distance

Maximum Sector Load (% of sector capacity)

Modeled Sector En Route Daily Delay

High Sectors

Many en route sectors are currently capacity constrained

