Prototyping an Iterative Combinatorial Exchange

Airline Industry Wye River Workshop, June 23, 2004

David C. Parkes
Harvard University

Why Markets?

- Takeoff and landing slots are a constrained resource
- Markets can facilitiate the efficient (re)allocation of slots:
 - administrative processes cannot do this
 - rationing cannot do this
 - multilateral negotiation cannot do this
- Markets can expose the true value of a slot and change strategic investment decisions:
 - new airport capacity
 - new technology, ...

Why an Exchange?

- · Keep incumbents whole:
 - allocate initial property rights
 - don't force anyone to sell
 - not a new "taxation"
- · Allow new-entrants to compete
- Extensible:
 - bring in additional resources (in-route capacity, gates, other airports, etc.)
 - bring in additional players (e.g. airports)

vs. one-sided markets & vouchers

- more expressive, simpler

Why a Combinatorial Exchange?

Slots are complements:

- {9.00am landing & 10.00am takeoff} vs. {9.00am landing and 9.15am takeoff}
- {9am takeoff@Logan, 10am landing@LGA} vs.
 {9am takeoff@Logan, 9.20am landing@LGA}

Slots are substitutes:

- {9am landing, 9.05am landing} vs {9am landing}

• Business constraints:

- "need at least 5 landing slots during peak M-F time"
- "need at least 2 landing slots between 10am and noon"

Alternative business plans:

- a) sell all slots, b) sell some slots, c) buy more slots

Why an **Iterative** Combinatorial Exchange?

- Multiple rounds
 - allow participants to revise bids
- Important when good space is large and complex
 - 18 hrs, 4 blocks/hr, 10 slots/block,
 2 runways, M-F, Sat, Sun:
 approx 4320 items/airport
 - ten's of arlines, each with hundred's of flights a day
 - multiple airports

How might this work?

- Fix goals (safety, efficiency, regional access, ...)
- · Define goods, & assign initial property rights
- Host an exchange:
 - goods: landing (takeoff) slots for one plane
 - attributes: time of day, day of week, plane size, flexibility
- Can impose additional constraints:
 - maximal market share
 - minimal level of competition
 - minimal level of regional service

policy tools

Long-term vs. Spot markets

Prototyping an Exchange

- Summer, 2001
 - proposed clearing rules for a one-shot combinatorial exchange (Parkes, Kalagnanam, Eso, IJCAI'01)
- October, 2001
 - presented exchange design to FCC-Wye river conference
- Spring, 2003
 - experiments on incentive properties of "Threshold" rule
- Summer, 2003
 - initial design for an iterative exchange
- November, 2003
 - presented iterative design to FCC-Wye river conference
- Spring, 2004
 - CS 286r: Project class focused on "Iterative Combinatorial Exchanges"
 - www.eecs.harvard.edu/~parkes/cs286r
 - study FCC and FAA domain problems

Exchange Design

- Bidding Language
 - expressive, compact
- Winner determination
 - scalable
- Feedback
 - prices
- Activity rules, termination
 - drive progress
- Distribution
 - final payments

Four Components

Code Development

Eclipse development environment, Java, CVS support Interfaces between components, Design for threading and distributed processing

CPLEX RMI servers, sitting behind a load balancer

XML language for component specifications, and simulation infrastructure Run on two, four-processor, Blade machines

Class mantra

"No enumeration of goods..."

First Component: Bidding Language

Bidding in the Exchange (related to Boutilier's LGB language)

- Compact and Expressive bidding language
 - logical structure ("one of", "all of", "some of",...)
 - goods at leaves ("buy A", "sell B")
- Buyer:
 - define value for acquiring new slots
- Seller:
 - define value (negative) for no longer holding slots
- Mixed buyer/sellers
 - define value (+ve, -ve) for a "bundled" trade

E.g. Buy any number of slots.

"buy A" leaf satisfied if item A allocated to that node.

E.g. Buy at most one slot

Buy any two slots, Buy all slots...

satisfied if any two children are satisfied

$$AND==(K,K)$$

E.g. Sell all slots

loss in value for selling one or both of these slots

"sell A" leaf satisfied if item A not allocated to agent.

E.g. Sell at most one slot...

A seller can supplement valuation tree with hard constraints (satisfied by intial allocation)

E.g. Swap A for B

Hard constraint tree

E.g. More Elaborate Plans...

E.g. "Swap Peak Slots for Off-peak"

E.g. Sell for sure, Try to Buy back

E.g. Multiple Business Plans...

Second Component: Winner Determination Proxy 1 Agent 1 WD FAA Exchange OD Bridge FCC Pricing Agent n Proxy n

Winner-Determination

Formulate as a MIP. Number of variables XOR V_1, S_1 scales as size of tree. V₂, S₂ **AND AND V**₃, **S**₃ 20 XOR 30 XOR OR V₄, S₄ Z 50 C D D

Internal Node Constraints

if at least x children satisfied, then

$$S_p = 1$$

$$V_p = B + \max_{K \leq Sat_p} \sum_{J \in K} V_{p_J} + P_{en_p}$$

$$|K| \leq y$$

else, $s_{\beta}=0$, $v_{\beta}=Pen_{\beta}$

Pen_B is total value across -ve valued children

 Sat_{β} is set of satisfied children

$$\mathbf{x} \mathbf{c} \mathbf{s}_{\beta} \cdot \sum_{\mathbf{i}} \mathbf{s}_{\beta \mathbf{i}}$$

$$v_{\beta i}$$
 M $t_{\beta i}$, 8 i $\sum_i t_{\beta i}$ y

$$\sum_{i} t_{\beta i} y$$

General MIP Formulation

$$\text{max } \textstyle \sum_{\text{i2 N}} \! \textbf{v}_{\beta}$$

s.t. internal node constraints

hard constraints $\sum_{\beta 2 \text{Sell}(A)} s_{\beta} \cdot 1 - x_{i}(A)$ $\sum_{\beta 2 \text{Buy}(B)} s_{\beta} \cdot x_{i}(B)$ $\sum_{i 2 \text{N}} x_{i}(A) \cdot \text{supply}(A)$... $\sum_{\beta 2 \text{Buy}(B)} s_{\beta} \cdot x_{i}(B)$ $\sum_{i 2 \text{N}} x_{i}(A) \cdot \text{supply}(A)$ $\sum_{i 2 \text{N}} x_{i}(A) \cdot \text{supply}(A)$ $\sum_{\beta 2 \text{Buy}(B)} s_{\beta} \cdot x_{i}(B)$ $\sum_{\beta 2 \text{Buy}($

buy(A): have good, one true. don't have good, all false sell(A): have good, all false. don't have good, one true.

 $x(\phi)$ variables define allocation.

Leaves

- satisfied if "A-token" assigned to this leaf
 - satisifed if "not A-token" sell Aassigned to this leaf

every node:

$$\mathbf{v}_{\beta}$$
 - $\mathbf{B}_{\beta} \mathbf{\mathcal{C}} \ \mathbf{s}_{\beta}$ + $\sum_{i} \mathbf{v}_{beta \ i}$

 $v_{\text{beta i}}$ · M¢ $s_{\beta i}$, 8 i

Hard Constraints Tree

Feasible, Root node satisfied

 OK_{β} = True, only when between x and y children are True.

Simple Example

Final allocation: Agent 3 sells B to agent 1.

Surplus: \$50

"Threshold" payments: Agent 1 pays \$40 to agent 3.

Third Component: Feedback

Incremental Bidding

Exchange Phases

Exchange Phases

Example: Round 1

10- p_A - 120, p_A - p_B (winner optimistic values) p_B - 100 (loser pessimistic value)) p_A = p_B =55

Bid Refinement: Round 1

Activity rules:

Winners: ask winners to refine u.b.'s to meet price

Losers: ask losers to refine l.b.'s to meet price

Round 2

10. p_A . 120, p_A . p_B (optimistic values)

p_B· 55 (pessimistic value)

$$p_{A}=p_{B}=35$$

Round 3

35. p_B . 60, p_B . p_A (pessimistic values)

 p_A 35 (optimistic value)

)
$$p_A = p_B = 35$$

Last & Final Round

Final allocation: Agent 3 sells B to agent 1.

"Threshold" payments: Agent 1 pays \$40 to agent 3.

Prices and Activity Ryles

- Phase 1: optimistic outcome
 - drive price feedback in early rounds
 - use winner u.b's and loser l.b's to set prices
- Phase 2: pessimistic outcome
 - drive price feedback in later rounds
 - use winner l.b's and loser u.b's to set prices

Activity rules:

- winners must lower u.b's to meet activity
- losers must increase l.b's to meet activity

Activity Rules work on Tree

Default Action

Approximate Linear Prices

• Given WD outcome λ^* , compute prices to solve:

```
min \delta + \Delta(p,p^{t-1})
s.t. v_i(\lambda^*_i)-p\phi \lambda^*_i, v_i(\lambda')-p\phi \lambda', 8 \lambda' 2 M, 8 i
where \lambda_{ij}=1 if i buys j, =-1 if i sells j
```

• $\Delta(p,p^{\dagger-1})$ is a price smoothing term (Hoffman et al.)

Solve with *column generation* to avoid enumeration.

Linear prices: Column Generation

Consider restricted master problem:

- · Get a feasible, but perhaps suboptimal solution
- Solve restricted problem:

max
$$\left[v_{\beta i} - p \phi \lambda_i\right] - \left[v_{i}^{\alpha} - p \phi \lambda_i^{*} + \delta\right]$$
 (RP)
s.t. (constraints describing i's valuation tree)

• If (RP > 0) then add new bundle to (MP), and resolve.

Dynamic Feedback to Participants

- Current provisional allocation and payments
- Prices to guide bid refinement
- · Can also provide "smart quoting"
 - how should I improve my bid to be a winner?
- Participants don't see:
 - other bids
 - allocation of other participants

- ...

Final Outcome

- Move to last and final round
- Give participants last chance to refine valuations
- · Clear exchange to maximize reported value
- Allocate surplus
 - no-one pays more than bid,
 - no-one receives less than ask
 - distribute surplus to mitigate bargaining and improve efficiency

Summary: Key Features

- Compact and expressive bidding language
- Staged proxy design w/ linear price feedback between stages
 - prices to guide value refinement
 - activity rules to drive progress
- Final "proxy round"
 - expressive bids
 - final clearing, final payments

Simulation and Testing

- Model FAA problem domain
 - problem generator
- Simulate bidding strategies
 - truthful & straightforward
 - ...
- Test Exchange
 - economic and computational properties

FAA: Domain Modeling

	LDC2004 "Donohue"	LPS2000 "CATS"	CS286r
Value of slots	 Proportional to size of aircraft 	• Random utility level	 aircraft size miles flown unit cost, revenue airline type peak/non-peak
Deviation from optimal slot	Current schedule preferredsame value	Current schedule preferredvalue scaled	Current schedule preferredvalue scaled
Expressiveness	OR	Atomic bids	XOR-(AND,OR)-XOR
Source of schedule data	Real data (from ATL)	Randomly generated	Randomly generated (can mimic real schedule)

Stages in Domain Modeling

Results in a complete specification of desired slots and valuation for each airline at an airport

Econ Analysis

Surplus versus Value for Buyers in One-Shot, Truthful WD-only Mechanism (over 10 Runs parameterized to 6,1,1,1)

Continued Work

- Experiments, to study:
 - speed of convergence
 - informativeness of linear prices
 - scalability
 - opportunities for strategic behavior
 - economic impact of exchange
 - policy tools (e.g. assignment of incumbent rights)
- Appeal for help:
 - guide this process!
 - policy goals for design
 - models of participants

Summary

- Combinatorial market technology is real
 - used every day for complex procurement problems
- · Expressive languages simplify:
 - allow participants to "say what want"
- Proxied & iterative exchange:
 - expressive bidding language, constraints for sellers
 - linear prices to guide bidding
 - bidding through refinement of value
 - final sealed-bid round

Acknowledgements

- · Students in CS 286r, especially
 - S.Lahaie, R.Cavallo, N.Elprin, A.Juda, A.Kirsch, A.Kulesza, B.Lubin, L.Michael, E.Ou, J-F.Raymond, J.Shneidman, B.Szekely, H.Sultan, A.Sumiyama, K.Venkatram.

Threshold Rule

