
Post-Deployment Assessments Using Daily and Flight Level Performance Metrics

> Mark Hansen Performance Metrics TIM May 2002

<u>National Center of EXcellence</u> in Avia<u>TiOn Research</u>

R&D Modeling Cycle

NEXTOR Metrics Research

- Effects of FFP1 on Terminal Area and En Route Performance
- Use Statistical Inference to Capture Impacts that may not be Directly Observable
- Focus on Delays and Time-in-System Metrics
- Normalize for Weather and Demand
- Presented Here

Effect of TTMA at LAX

Effect of URET

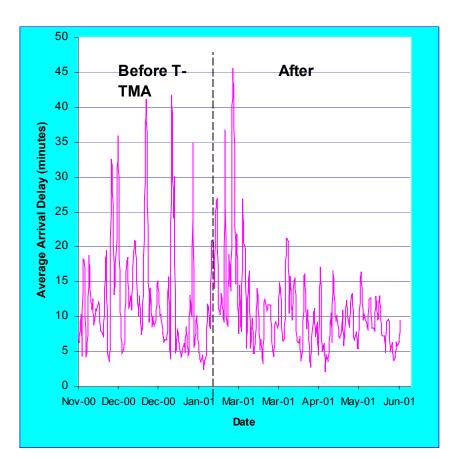
Final Approach Spacing Tool

- Decision support tool for TRACON
- P(assive)FAST advises on runway assignment and landing sequence
- Active FAST provides speed and turn advisories

Advisories incorporated into ARTS display
Prior PFAST implementation at DFW

FAST at LAX

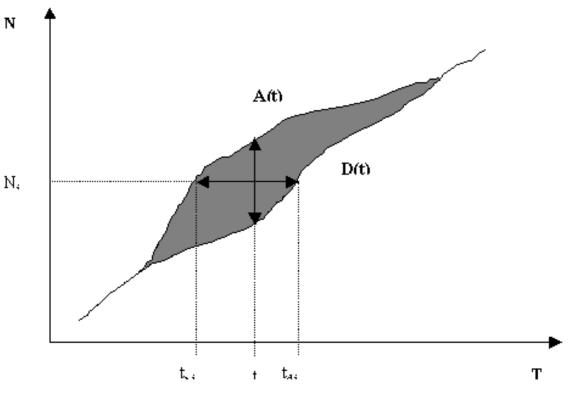
- "Passive Passive FAST" (P²FAST) or "T-TMA"
- No advisories
- Separate displays depict traffic up to 300 nm out using combination of HOST and ARTS data
- A situation-awareness tool instead of a decision automation tool

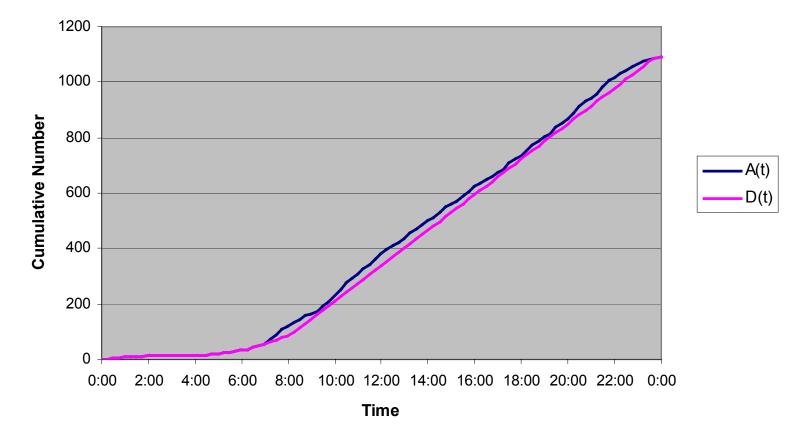

Impacts of TTMA at LAX

Average Delay Analysis Model Average Daily Arrival Delay Control for Demand-Capacity Daily Flight Time Index Model Flight Times and their Components Control for Demand, Weather, and **Congestion at Up-line Airports**

Arrival Delay at LAX

- High day to day variability due to varying weather conditions and demand
- Need to normalize the effect of the external factors





Predicted Delay Metric

- Arrival demand curve A(t) based on "on time" arrival according to OAG schedule
- AAR sets an upper bound for actual arrival curve D(t)
- Shaded area under the curves gives total delay
- Delay: predicted and hypothetical

Example: Queuing Diagram for December 1, 2000 (A Bad Day)

The Linear Regression Model

- Study period: Nov
 1, 2000 Jun 30,
 2001
- Model estimated using OLS
- Assumes Acceptance Rates not Affected by TTMA

 $DELAY_{t} = \beta_{0} + \beta_{1}HDD_{t} + \beta_{2}TTMA_{t}$

Where,

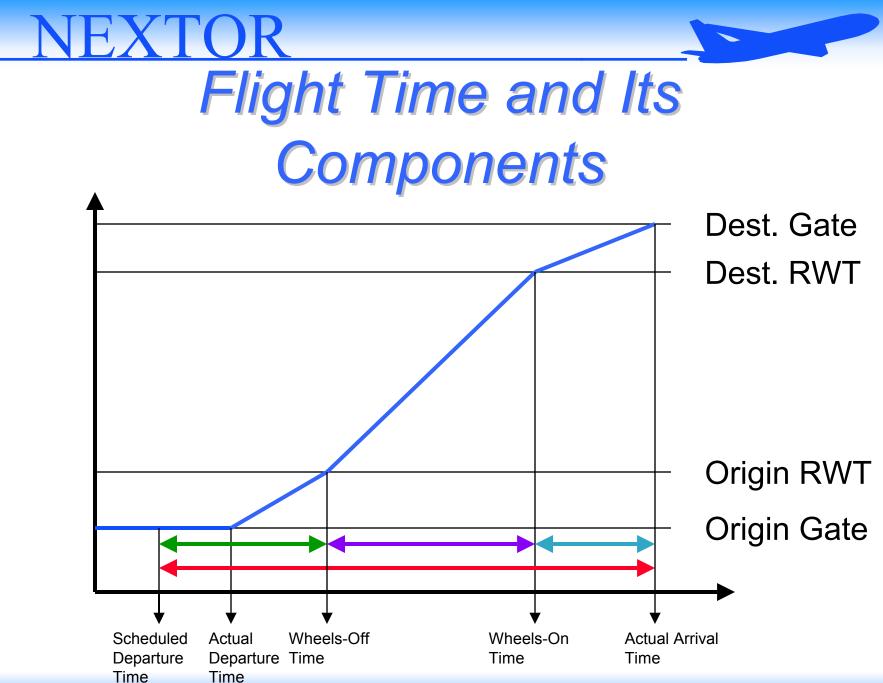
$DELAY_t$	is the average arrival delay for LAX arrivals of
	day t;
HDD_t	is the predicted average arrival queuing delay for LAX on day t;
TTMA _t	is a dummy variable set to 0 for days before T- TMA initial daily use at the SOCAL TRACON, and 1 after

Results

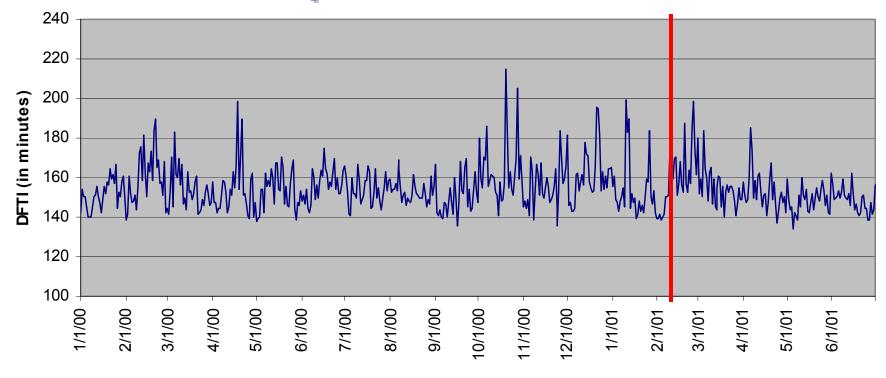
- T-TMA reduces arrival delay by 2.1 minutes
- Amount of nonqueuing delay incurred by LAX arrivals: 9.29 minutes
- 1 minute of predicted queuing delay increases arrival delay by 0.89 min

Parameters	Estimates and Significance Level
β ₀	9.29 (0.0001)
β ₁	0.89 (0.0001)
β 2	-2.08 (0.0024)
R-Square	0.50

Impact on Days with Flow Control


Reduced average arrival delay by 7.57 minutes in days with flow control

Effect on days without flow control low and insignificant


Parameters	Estimates and Significance Levels		
	Days Without Flow Control	Days With Flow Control	
β ₀	7.59 (0.0001)	17.62 (0.0001)	
β ₁	0.96 (0.0001)	0.64 (0.0001)	
β ₂	-0.64 (0.2410)	-7.57 (0.0010)	
R-Square	0.23	0.48	

Daily Flight Time Index (DFTI)

- Daily weighted average of flight times to a given airport from a set of origins
- Analogous to a Consumer Price Index
- Origins in "market basket" have at least one completed flight in each day of sample
- Weights reflect origin share of flights to study airport over study period

NEXTOR DFTI Before and After Implementation

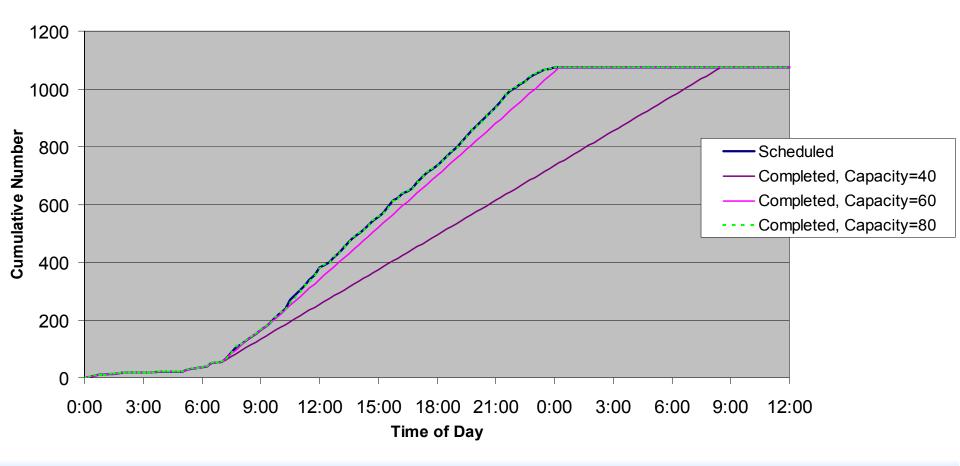
Date

Weather Normalization

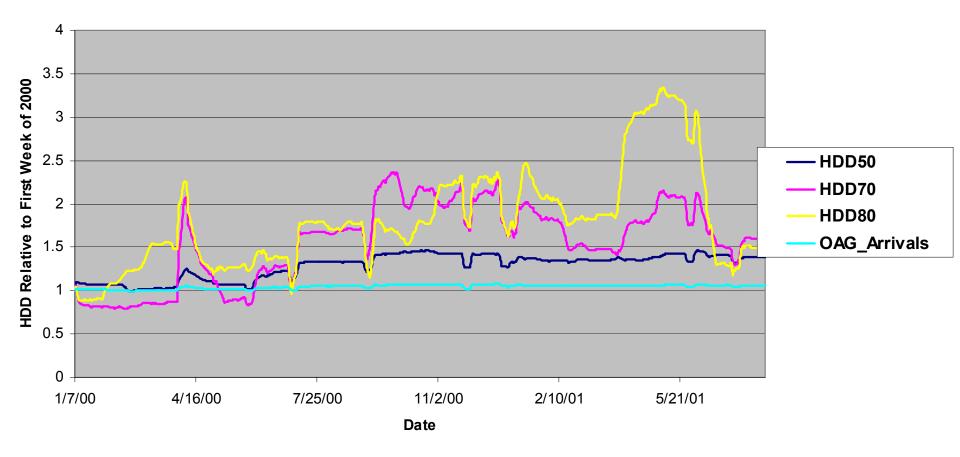
- Based on CODAS hourly weather observations for LAX
- Factor analysis of weather data
 - Create small number of factors that capture variation in large number of variables
 - Factors are linear combinations of original variables
 - Factors correspond to principal axes of Ndimensional data elipse

NEXTOR LAX Weather Factor Interpretations

Factor	Interpretation			
1	High temperature throughout the day			
2	High cloud ceiling and VFR conditions in the afternoon and evening			
3	High cloud ceiling and VFR conditions in the morning			
4	High visibility throughout the day			
5	High wind speed in the afternoon and evening			
6	Medium cloud ceiling in the evening			
7	Medium cloud ceiling in the morning hours			

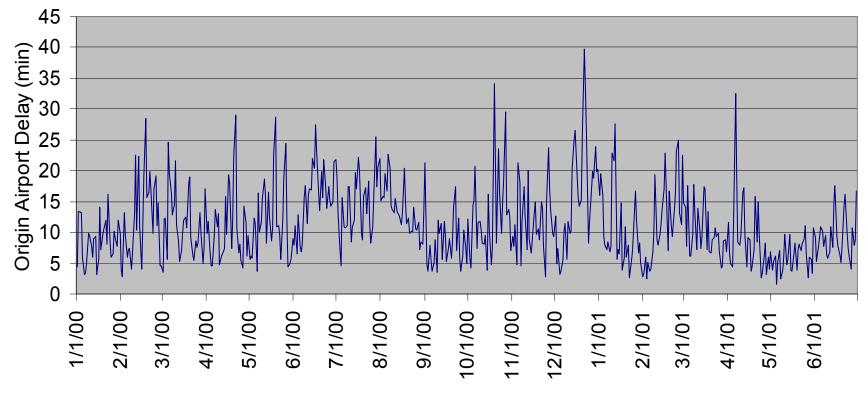


Demand Normalization


- Deterministic Queuing Analysis
- Arrival Curve from Official Airline Guide
- Departure Curves and Average Delays Calculated Assuming Range of Hypothetical Capacities
- Factor Analysis Applied to Obtain Reduced Set of Demand Factors

Queuing Diagrams

IEXTOR


Trends in HDD Parameters for the Study Period (7-Day Moving Average)

NEXTOR Normalization for Conditions at other Airports

- Consider airports included in DFTI average
- For each compute daily average departure delay for flights <u>not</u> bound to LAX region
- Average airport departure delays using DFTI weights

Performance Models $Y_{t} = f(WX_{t}, DMD_{t}, ODEL_{t}) + \varepsilon_{t}$

Where:

 Y_t is DFTI or DFTI component for day t; WX_t is vector of weather factors for day t; DMD_t is vector of demand factors for day t; $ODEL_t$ is average origin departure delay for day t;

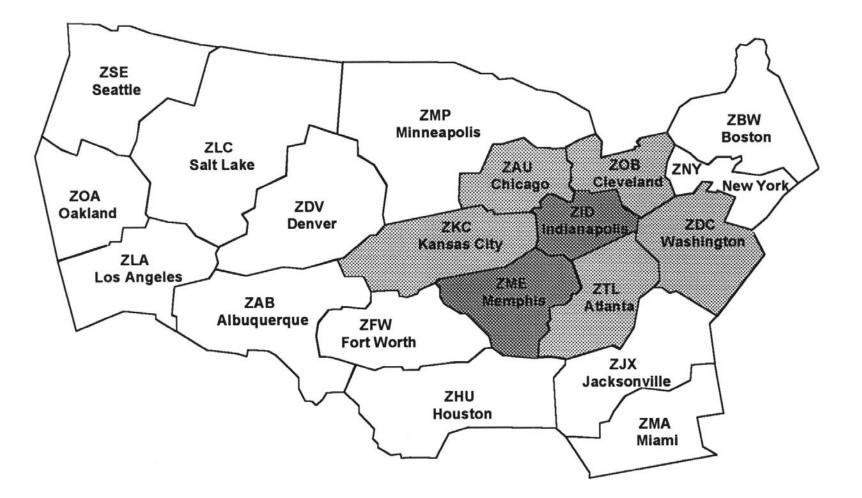
 ε_t is stochastic error term.

TTMA Normalization Results

Variable	Pa	rameter Estimates	8	
	DFTI	At Origin	Airborne	Taxi-in
intercept	139.29	15.23	115.9	8.11
TTMA	-1.99	-1.71	-0.19	-0.07
OAC	1.39	1.29	0.03	0.06
Peak Demand	-0.35	-0.1	-0.24	-0.01
Base Demand	0.97	0.74	0.04	0.19
Weather Factor1	-3.37	-0.89	-2.63	0.14
Weather Factor2	-2.66	-1.8	-0.75	-0.12
Weather Factor3	-1.88	-1.36	-0.48	-0.04
Weather Factor4	0.19	-0.24	0.49	-0.07
Weather Factor5	1.48	0.73	0.79	-0.03
Weather Factor6	0.46	0.12	0.31	0.02
Weather Factor7	0.64	0.27	0.29	0.81
Adjusted R-Square	0.79	0.83	0.55	0.39

Significant at 5% level

Significant at 10% level


LAX T-TMA Key Findings

- Delay reduction 2 min/flight
- Effect concentrated on
 - Departure delay
 - Days with flow control programs for LAX
 - Short Duration Flights
- Also evidence of
 Higher throughput
 Reduced cancellations

User Request Evaluation Tool

- En Route Decision Support Tool
- Automated Conflict Detection
- Trial Planning
- Automated Coordination
- Allows More Direct Routings and Increases En Route Sector Capacity

URET Deployment

January 1995		January 1996	February 1996	May 1996
Prototype development begins		l st prototype in ZID	 Evaluations begin	Continuous probing added
Noveml	per 1996	December 1996	June 1997	October 1997
 Sector notific logic a	ation	Integrated at a D-side in ZID	Installed in ZME	l Daily use in ZID
November 1997	Beginni	ing 1998	July 1999	February 2000
Daily use in ZME	Interfa capabi added	ility	Two-way communication with HCS added	22 hours a day operational use begins at both ZID and ZME

URET Impact

- Performed Flight Level Analysis
- Observed Airborne Time for ASQP Flights for Corresponding Months Before and After URET (about 800,000 per analysis)
- Effects Estimated

Before vs After URET

Use URET Sectors vs Don't Use

Use URET Sectors*After URET

Control for Distance, Direction, and Originating Airport and Destination Airport

Individual Flight Times Model

$$FlightTime = \tau + \sum_{\ell} \alpha_{\ell} L_{\ell} + \beta_{lat} \cdot X_{lat} + \beta_{lon} \cdot X_{lon} + \sum_{i=1}^{40} [\delta_{ai} \cdot A_i + \delta_{di} \cdot D_i] + \sum_{\ell} (\delta_{ai} \cdot A_i + \delta_{di} \cdot D_i) + \sum_{\ell} (\delta_{ai} \cdot A_i +$$

 $\mu \cdot URET + \pi \cdot AFTER + \theta \cdot AFTER \cdot URET$

Relation between Time Period, Center, and URET Effects

	Year 1999	Year 2000
Don't Fly Through URET Centers	Base Case	Time Period Effect
Fly Through URET Centers	Center Effect	URET Effect

Individual Flight Times Model for April

Coefficient	Description	Estimate	Standard Error	P-Value
τ	Intercept	24.470	0.3672	< 0.0001
$lpha_{_{1}}$	Distance in 0-200 nm range	0.169	0.0020	< 0.0001
$lpha_2$	Distance 200-500 nm range	0.146	0.0005	< 0.0001
$lpha_3$	Distance 500-1000 nm range	0.139	0.0003	< 0.0001
$lpha_4$	Distance 1000+ nm range	0.131	0.0002	< 0.0001
$eta_{_{lat}}$	Difference in latitude	3.426	0.5969	< 0.0001
eta_{lon}	Difference in longitude	21.890	0.2274	< 0.0001
μ	URET dummy	4.172	0.0854	< 0.0001
π	AFTER dummy	-1.322	0.1257	< 0.0001
heta	AFTER URET interaction	-3.260	0.1506	< 0.0001
Adjusted R ²		0.8168		
Number of		~800,000		
Observations				

URET Influence on Flight Times (min)

Month	Flight Time	Airborne	Departure Delay	Taxiout	Adjusted R ²
			Delay		
February	-1.643	-0.239	-1.392	-0.011	0.8693
March	-1.367	-0.512	-0.929	0.074	0.8672
April	-1.354	-0.452	-0.865	-0.037	0.8591
May	-1.099	-0.196	-0.929	0.026	0.8445
June	-3.260	-0.345	-2.828	-0.086	0.8186
July	-0.502	0.223	-0.751	0.026	0.8225

The Coefficients in bold letters are statistically significant on 1% level.

URET Key Findings

- Flight times decreased 1-2 minutes after URET implementation in most months
- Airborne times decreased around 20 seconds
- Most flight time reduction is in departure delay
- Departure delay reductions focus on:

Bad weather days

Departure airports in/near URET centers

Conclusions

- Ex Post Analysis of Deployment Impacts Necessary to Close R&D Modeling Cycle
- Normalization Required to Isolate Impacts of Deployment
- Can be Done at Daily or Flight Level
- Results for T-TMA and URET Show Benefits but with Surprises