Normalization of Airport and Terminal Area Operational Performance: A Case Study of Los Angeles International Airport

Mark Hansen and Tanja Bolic

National Center of Excellence for Aviation Research University of California at Berkeley

Fourth International Air Traffic Management R&D Seminar December 2001

Outline

Background and Motivation Methods

- Results
- Application
- Conclusions

Normalization

- Analyze trends in aviation infrastructure performance
- Determine effects of deployments of new technology or infrastructure
- Quantify effects within and outside FAA control

NEXTOR Normalization Work

Sponsored by FAA Free Flight Office

Focus on Delays and Time-in-System Metrics

Analysis at Daily Level

Conceptual Framework

Daily Flight Time Index (DFTI)

- Daily weighted average of flight times to a given airport from a set of origins
- Analogous to a Consumer Price Index
- Origins in "market basket" have at least one completed flight in each day of sample
- Weights reflect origin share of flights to study airport over study period

NEXTOR DFTI Time Series for LAX

30-Day Moving Average

7-Day Moving Average with Components

Variance Decomposition

 $\begin{aligned} DFTI &= ORIGIN + AIRBORNE + TAXI - IN \\ VAR(DFTI) &= VAR(ORIGIN) + VAR(AIRBORNE) + VAR(TAXI - IN) + \\ 2 \cdot [COV(ORIGIN, AIRBORNE) + COV(AIRBORNE, TAXI - IN) + \\ COV(ORIGIN, TAXI - IN)] \end{aligned}$

Variance Decomposition

Year

Weather Normalization

- Based on CODAS hourly weather observations for LAX
- Factor analysis of weather data
 - Create small number of factors that capture variation in large number of variables
 - Factors are linear combinations of original variables
 - Factors correspond to principal axes of Ndimensional data elipse

NEXTOR Factor Analysis with Two Variables

NEXTOR 9-Factor Representation of LAX Daily Weather

Factor	Interpretation
1	Warm temperatures throughout day.
2	VFR operations and absence of low cloud ceiling in the
	morning.
3	VFR operations and absence of low cloud ceiling in the
	afternoon.
4	High visibility throughout day.
5	Medium cloud ceiling throughout day.
6	High winds throughout day.
7	High ceiling cloud ceiling throughout day; evening
	precipitation.
8	Precipitation in late morning and afternoon.
9	Precipitation in early morning.

Demand Normalization

- Deterministic Queuing Analysis
- Arrival Curve from Official Airline Guide
- Departure Curves and Average Delays Calculated Assuming Range of Hypothetical Capacities
- Factor Analysis Applied to Obtain Reduced Set of Demand Factors

Queuing Diagrams

Trends in Values of HDD Parameters and Scheduled Arrivals since 1997

DAY	HDD50	HDD60	HDD70	HDD80	HDD90	HDD100	HDD110	HDD120
6/24/97	124.55	44.62	6.86	2.64	1.07	0.40	0.16	0.09
1/17/99	52.88	6.96	0.87	0.06	0.00	0.00	0.00	0.00
6/29/99	111.90	28.71	3.11	0.85	0.29	0.11	0.04	0.00

Factor Analysis of HDD Variables

	Initial	Factors	Rotated	Rotated Factors		
	FACTOR1	FACTOR2	FACTOR1	FACTOR2		
HDD10	0.86	-0.46	0.95	0.22		
HDD20	0.89	-0.42	0.95	0.27		
HDD30	0.88	-0.46	0.96	0.24		
HDD40	0.87	-0.46	0.96	0.23		
HDD50	0.91	-0.37	0.93	0.32		
HDD60	0.92	-0.20	0.83	0.45		
HDD70	0.92	0.10	0.62	0.68		
HDD80	0.89	0.34	0.45	0.84		
HDD90	0.86	0.46	0.34	0.91		
HDD100	0.82	0.53	0.27	0.94		
HDD110	0.78	0.57	0.21	0.94		
HDD120	0.70	0.59	0.14	0.91		

Normalization for Conditions

at other Airports

- Consider airports included in **DFTI** average
- For each compute daily average departure delay for flights not bound to LAX region
- Average airport departure delays using DFTI weights

Origin Airport Delay Time Series

Performance Models $Y_{t} = f(WX_{t}, DMD_{t}, ODEL_{t}) + \varepsilon_{t}$

Where:

 Y_t is DFTI or DFTI component for day t; WX_t is vector of weather factors for day t; DMD_t is vector of demand factors for day t; $ODEL_t$ is average origin departure delay for day t;

 ε_t is stochastic error term.

Functional Forms Considered

Parametric

- Linear (with 3, 6, 9, and 12 weather factors)
- Quadratic response surface
- ❑Non-linear

Non-parametric

- 9 clusters based on 3 weather factors
- 12 clusters based on 9 weather factors

Linear Model Estimation Results

Variable	Description	Estimate	T - statistic	P - value
INTERCEPT	Intercept	138.055	567.065	0.0001
OAC	Origin airport congestion	1.128	44.351	0.0001
WX ₁	Warm daily temperatures	-1.357	-12.101	0.0001
WX ₂	VFR ops, no low cloud ceiling in the morning	-0.988	-7.116	0.0001
WX ₃	VFR ops, no low cloud ceiling in the afternoon	-1.123	-7.583	0.0001
WX ₄	High visibility throughout day	-0.449	-3.575	0.0004
WX_5	Medium cloud ceiling throughout day	1.440	10.555	0.0001
WX ₆	High winds throughout the day	0.512	4.531	0.0001
WX ₇	High cloud ceiling throughout day	0.911	4.172	0.0001
WX ₈	Precipitation in late morning and afternoon	1.871	8.324	0.0001
WX ₉	Precipitation in early morning	-0.379	-2.614	0.0091
DMD ₁	Peak demand	0.075	0.725	0.4685
DMD ₂	Base demand	0.440	4.574	0.0001
ADJUSTED R ²			0.743	

Predicted vs Actual Values

- Used TMU logs to investigate days for which predictions have large errors
- Reasons for higher than predicted DFTI
 - East flow
 - Radar outages
 - □Air Force One
 - Over-stringent ground delay program

Models for DFTI Components

	Time-at-origin		Airborne	e time	Taxi-in time		
Variable	Estimate	P - value	Estimate	P - value	Estimate	P - value	
INTERCEPT	14.588	0.0001	115.594	0.0001	7.874	0.0001	
ODEL	1.099	0.0001	-0.012	0.4621	0.041	0.0001	
WX1	-0.065	0.4011	-1.474	0.0001	0.182	0.0001	
WX2	-0.722	0.0001	-0.233	0.0100	-0.033	0.2290	
WX ₃	-0.669	0.0001	-0.348	0.0003	-0.105	0.0003	
WX₄	-0.201	0.0198	-0.186	0.0232	-0.062	0.0125	
WX5	0.599	0.0001	0.846	0.0001	-0.005	0.8567	
WX ₆	0.154	0.0480	0.428	0.0001	-0.069	0.0021	
WX7	0.372	0.0132	0.503	0.0004	0.036	0.3995	
WX _θ	0.897	0.0001	0.796	0.0001	0.179	0.0001	
WX9	-0.060	0.5485	-0.316	0.0008	-0.003	0.9158	
DMD ₁	0.034	0.6366	0.234	0.0005	-0.193	0.0001	
DMD ₂	0.260	0.0001	0.060	0.3367	0.120	0.0001	
ADJUSTED R ²	0.8)4	0.42	27	0.21	3	

Response Surface Model

- High demand increases the importance of visibility
- Effects of precipitation and winds re-enforcing
- Diminishing marginal impact of winds

	Second Order												
							FACTO	R					
First (Order	ODEL	WX_1	WX_2	WX ₃	WX_4	WX ₅	WX_6	WX_7	WX_8	WX ₉	DMD_1	DMD_2
ODEL	1.161	-0.006	-0.001	0.021	0.013	0.020	0.104	0.017	-0.032	0.243	-0.003	-0.078	0.003
$WX_1 =$	-1.639		-0.186	0.442	0.309	0.439	0.016	-0.278	0.287	-0.241	0.103	-0.285	-0.210
WX_2	-1.250			-0.199	0.078	0.244	-0.055	-0.106	-0.570	-0.103	-0.488	0.044	-0.468
$WX_3 =$	-1.005				0.140	-0.056	0.255	-0.264	-0.296	-0.172	-0.128	-0.278	-0.340
WX_4	-0.061					0.031	-0.036	0.402	0.187	-0.517	0.049	-0.176	-0.085
WXs -	2.464						-0.432	-0.125	0.016	0.717	0.212	0.321	0.221
WX ₆	0.594							-0.160	-0.040	1.050	-0.140	-0.060	-0.066
WX_7	0.886								0.057	-0.161	0.524	-0.455	0.591
WX ₈	1.011									-0.346	-0.027	-0.062	-0.052
WX_9	-0.987										-0.131	0.221	-0.185
DMD_1	-0.762											0.293	-0.077
DMD_2	0.782												-0.022
ADJUS	TED R	2						0.820					

NEXTOR Impacts of a Decision Support Tool at LAX

FFP1 Background
 The Tool
 Deployment Experience
 Impacts

Free Flight Phase I

 Deploy terminal area/en route decision support tools (CTAS, SMA, and URET) at selected sites
 Normalization useful for assessing operational impacts and benefits

Final Approach Spacing Tool

- Decision support tool for TRACON
- P(assive)FAST advises on runway assignment and landing sequence
- Active FAST provides speed and turn advisories
- Advisories incorporated into ARTS display
- Prior PFAST implementation at DFW

FAST at LAX

- "Passive Passive FAST" (P²FAST) or "T-TMA"
- No advisories
- Separate displays depict traffic up to 300 nm out using combination of HOST and ARTS data
- A situation-awareness tool instead of a decision automation tool

Why TTMA for LAX?

Significant "internal" operations Departures from within SOCAL TRACON and ZLA Center No acceptable "work-arounds" Initial deployment until DS software can be adapted

NEXTOR DFTI Before and After Implementation

Date

TTMA Normalization Results

Variable	Pa	rameter Estimates	6	
	DFTI	At Origin	Airborne	Taxi-in
intercept	139.29	15.23	115.9	8.11
TTMA	-1.99	-1.71	-0.19	-0.07
OAC	1.39	1.29	0.03	0.06
Peak Demand	-0.35	-0.1	-0.24	-0.01
Base Demand	0.97	0.74	0.04	0.19
Weather Factor1	-3.37	-0.89	-2.63	0.14
Weather Factor2	-2.66	-1.8	-0.75	-0.12
Weather Factor3	-1.88	-1.36	-0.48	-0.04
Weather Factor4	0.19	-0.24	0.49	-0.07
Weather Factor5	1.48	0.73	0.79	-0.03
Weather Factor6	0.46	0.12	0.31	0.02
Weather Factor7	0.64	0.27	0.29	0.81
Adjusted R-Square	0.79	0.83	0.55	0.39

Significant at 5% level

Significant at 10% level

Collaborating Evidence

- Evidence of increased throughput rates when system is under stress
- Controllers love it
 - Anticipate overloads and slow planes down to avoid holding
 - Better runway balancing

Conclusions

- 70-80% DFTI variation "explained" statistically (in case of LAX)
 - □Up-line delay is largest driver
 - Variety of weather impacts
 - Modest gain from more complicated models
- Normalization shows benefit from TTMA Implementation