

Estimating Delay and Capacity Impacts of Airport Infrastructure Investments

Mark Hansen May 2003

NEXTOR Metrics Research

- Effects of Investments and Technological Deployments on Terminal Area and En Route Performance
- Use Statistical Inference to Capture Impacts that may not be Directly Observable
- Consider both Throughput and Time-in-System Metrics

Fig.1: Airfield Layout Plan of DTW showing the New Runway 4L/22R and McNamara Terminal for NWA

- Runway 4L/22R Came On-line 12/11/01
- Simultaneous Arrival and Departure Streams Under IFR and VFR
- 4R/22L Dedicated to Departures Instead of Mixed Ops

Background

Expected Impacts

- Benchmark Study: VFR and IFR capacity increases of 25% and 17% respectively (assuming "full use of runway")
- Press Release
 - □Overall capacity increase of 25%
 - □50% capacity increase during peak times
 - □ 3000 hrs of delay reduction

Motivation

- Initial Free Flight Office analysis found little impact
- Implications for ability to measure impact of more incremental changes
- Confounding effects of 9/11

Data

- ASPM quarter-hour data for first six months of 2001 (before) and 2002 (after)
- Four metrics
 - Arrival counts and departure counts
 - Arrival demand and departure demand
 - Flight counted toward demand beginning in the quarter hour when it is expected to arrive/depart based on last filed flight plan before departure
 - □ If arrival/departure occurs earlier than planned then flight counted toward demand in the earlier period
 - Demand never exceeds count
 - Different between count and demand is queue length at end of period

Arrivals

Change in VMC Distribution of Arrival and Departure Counts, Jan-June 2001-2002 (purple is increase; light is decrease)

Departures

8

Change in IMC Distribution of Arrival and Departure Counts, Jan-June 2001-2002 (purple is increase; light is decrease)

9

FIGURE 5 Departure Count Distribution for Jan-Jun 2001 & 2002 VFR Conditions.

FIGURE 6 Departure Count Distribution for Jan - Jun 2001 & 2002 IFR Conditions.

11

FIGURE 7 Arrival Count Distributions for Jan - Jun 2001 & 2002 VFR Conditions.

FIGURE 8 Arrival Count Distributions for Jan - Jun 2001 & 2002 IFR Conditions.

FIGURE 9

Mean Departure Count vs Departure Demand Jan-Jun 2001 & 2002 VFR Conditions.

FIGURE 10

Mean Departure Count vs Departure Demand Jan-Jun 2001 & 2002 IFR Conditions.

FIGURE 11

Mean Arrival Count vs Arrival Demand Jan-Jun 2001 & 2002 IFR Conditions.

Censored Regression Analysis

Data "saturates" measurement device
Example: speedometer

Application to Airport Capacity

Actual Speed Capacity
Maximum Speed Measurement Demand

Censored Regression Model 1

$COUNT_{op,t} = \min(CAP_{op,t}, DMD_{op,t})$

$CAP_{op,t}$	$\sim NORM$	$T(\mu_{op,m(t),a(t)}, \phi)$	$\sigma^2_{op,m(t)}$)
1 >			1 / ()	

$COUNT_{op,t}$	ASPM count of operation <i>op</i> (arrs/deps) and 15-min time period <i>t</i>
$CAP_{op,t}$	Capacity for <i>op</i> in time period <i>t</i>
$DMD_{op,t}$	ASPM demand for <i>op</i> in time period <i>t</i>
$\mu_{op,m(t),a(t)}$	Mean capacity for <i>op</i> , meteorlogical condition <i>m</i> (VMC/IMC), before (a=0) and after (a=1) new runway
$\sigma^2_{op,m(t)}$	Capacity variance for <i>op</i> , meteorlogical condition <i>m</i> (VMC/IMC)

Problems with Model 1

- Flights counted toward demand may be unable to land/depart for reasons other than capacity constraint ("anomalously delayed" (AD) flights
- □ These can greatly distort capacity inferences

Example

- Demand=5
- Capacity=20
- □No AD Flights⇒Capacity≥5
- □1 AD Flight⇒Capacity=4

Censored Regression Model 2

- $COUNT_{op,t} = \min(CAP_{op,t}, DMD_{op,t}^{*})$ $CAP_{op,t} \sim NORM(\mu_{op,m(t),a(t)}, \sigma_{op,m(t)}^{2})$
- $DMD_{op,t}^{*} \sim BINOM(DMD_{op,t}, PNAD_{op,m(t)})$

Where $PNAD_{op,m(t)}$ is the probability that a flight counted toward the demand for *op* is <u>not</u> anomalously delayed under meteorlogical condition *m*. It is calculated using count/demand ratios for under low demand conditions.

Rates of Anomalous Delays based on Count/Demand Ratios for Demand<5 FPQH

Meteorological	Operation	Pre-	Post-	
Condition	Type	deployment	deployment	Overall
VMC	Arrivals	0.0132	0.0153	0.0142
	Departures	0.0285	0.0300	0.0293
IMC	Arrivals	0.0245	0.0214	0.0230
	Departures	0.0662	0.0603	0.0634

Table 2—Observed Rates of Anomalous Delays

Likelihood Function

 $LL(\alpha_{oV}, \beta_{oV}, \sigma_{oV}, \alpha_{oI}, \beta_{oI}, \sigma_{oI} | Q_o(1) \dots Q_o(T), P_{oV}, P_{oI}) =$ $\sum_{\substack{Q_{o}(t) < D_{o}(t) \\ Q_{o}(t) > 0}} \log \left\{ \begin{bmatrix} \frac{D_{o}(t)! P_{o,m(t)}^{D_{o}(t) - Q_{o}(t)} (1 - P_{o,m(t)})^{Q_{o}(t)}}{Q_{o}(t)! (D_{o}(t) - Q_{o}(t))!} \\ \begin{bmatrix} \frac{D_{o}(t)! P_{o,m(t)}^{D_{o}(t) - Q_{o}(t)}}{Q_{o}(t)! (D_{o}(t) - Q_{o}(t))!} \end{bmatrix} \\ + \begin{bmatrix} \frac{D_{o}(t)! P_{o,m(t)}^{D_{o}(t) - Q_{o}(t)} (1 - P_{o,m(t)})^{D_{o}(t) - n}}{N! (D_{o}(t) - n)!} \\ \end{bmatrix} \\ \frac{\Phi((Q_{o}(t) - \alpha_{o,m(t)} - \beta_{o,m(t)} A(t)) / \sigma_{o,m})}{\sigma_{o,m}} \end{bmatrix} \right\}$ $+\sum_{\substack{D_{o}(t)>0\\Q_{o}(t)=0}}\log\left\{P_{o,m(t)}^{D_{o}(t)}+\sum_{n=1}^{D_{o}(t)-1}\left(\frac{D_{o}(t)!P_{o,m(t)}^{n}(1-P_{o,m(t)})^{D_{o}(t)-n}}{n!(D_{o}(t)-n)!}\cdot\Phi\left(\frac{-\left(\alpha_{o,m(t)}+\beta_{o,m(t)}A(t)\right)}{\sigma_{o,m}}\right)\right)\right\}$ $+\sum_{Q_o(t)=D_o(t)}\log\left(\left(1-P_{o,m(t)}\right)^{D_o(t)}\cdot\Phi\left(\frac{\alpha_{o,m(t)}+\beta_{o,m(t)}A(t)-Q_o(t)}{\sigma_{o,m}}\right)\right)$

Estimation Results

- VMC departure capacity increased from 83 to 88 per hour
- No significant capacity increases for arrivals or IMC departures
- Interpretation
 - New runway replaced share-use runway with dedicated departure and arrival runways
 - Greatest impact on departures because arrivals given priority on shared-use runway
 - Greatest impact in VMC because IMC creates natural gaps in arrival stream that can be used for departures
 - Further changes expected when triple arrival stream procedure is implemented

- How much more delay would there have been if 2002 demand had been served by DTW without the new runway?
- Estimate using deterministic queuing diagram
- Consider departure delays only

Delay Impact Calculations

Relationship between New Demand, Total Demand, and Throughput

Delay Impact Estimates

		JanJune 2001		JanJune 2002	
		Mean	Std. Dev	Mean	Std. Dev
Departures	Observed	1.92		1.93	
	Simulated Baseline	2.00	0.060	1.92	0.032
	Simulated Counterfactual	1.77	0.052	2.26	0.070
	Difference	0.23		-0.34	
Arrivals	Observed	1.01		0.95	
	Simulated Baseline	0.89	0.026	0.93	0.029
	Simulated Counterfactual	0.92	0.027	0.90	0.041
	Difference	-0.03		0.03	

Table 5—Delay Comparisons, Simulated vs Observed, and Baseline vs Counterfactual

Conclusions

- Runway 4L/22R increased departure capacity but not departure capacity in post deployment period
- 7% capacity increase resulted in 15% departure delay decreased
- Impacts may change when additional procedures implemented
- Methodology shows promise for assessing capacity impacts of a large variety of events