

Dynamic Stochastic Model for a Single Airport Ground Holding Problem

Avijit Mukherjee Mark Hansen

University of California at Berkeley

Literature

- □ Static Integer Programming
 - ☐ Many papers on deterministic problem
 - □Stochastic problem studied in Richetta and Odoni (1993); Hoffman (1997); Ball et al.(2003)
 - □ Equity issues addressed by Vossen et al. (2002)

Literature

- □ Dynamic Models: Richetta and Odoni (1994)
 - ☐ Inability to revise previously assigned ground delays
 - □Objective function is to minimize expected delay cost
 - ■No longer Linear Programming Problem if nonlinear measure of delay introduced
 - ☐ Can handle specific type of scenario tree

Research Contributions

- Dynamic Stochastic Model for SAGHP
 - □ Ability to revise ground delays of some flights (non-departed)
 - ☐ Can handle any generalized scenario tree
- □ Alternative Objective Functions
 - □ Expected Squared Deviation from RBS Allocation
- Multi-Criteria Optimization

Capacity Scenario Tree

Decision Making Process

Decision Variables

$$X_{f,t}^{q} = \begin{cases} 1 & \text{if flight f is planned to arrive by time period} \\ & \text{t under scenario q;} \\ 0 & \text{otherwise} \end{cases}$$

Model Formulation

- Objective Function
 - ■Min. Expected Total Cost of Delay (sum of ground and airborne delays)
- Major Constraints
 - □ Number of arrivals during any time interval (period) less than airport capacity
 - □ Coupling Constraints: decisions cannot be based on a particular scenario until it is completely realized

NEXTOR

Model Parameters and Input Data

 $\{1..T+1\}$: set of time periods of uniform duration, T being the planning horizon

 $\Phi = \{1..F\}$: Set of Flights

 $Dep_f \in \{1..T\}$: scheduled departure time period of flight f

 $Arr_f \in \{1..T\}$: scheduled arrival time period of flight f

 λ : Cost ratio between airborne and ground delay

Θ: set of capacity scenarios

 P_q : Probability of occurrence of scenario $q \in \Theta$

 M_t : Airport arrival capacity at time period t under capacity scenario q

 M_{T+1}^{q} is set to a high value for all $q \in \Theta$

B = total number of branches of the scenario tree; $B \ge |\Theta|$

 N_i = number of scenarios represented by i^{th} branch; $i \in \{1...B\}$

The scenarios represented by branch i is given by set

$$\Omega_{i} = \{S_{1},...,S_{k},...,S_{N}\}, S_{k} \in \Theta$$

The time periods corresponding to start and end nodes of a branch are given by

$$o_i \ and \ \mu_i; i \in \{1..B\}$$

$$|B = 7; \Theta = \{\chi_1, \chi_2, \chi_3, \chi_4\}; |\Theta| = 4$$

Decision Variables

$$\boldsymbol{X}_{f,t}^{q} = \begin{cases} 1 & \text{if flight f is planned to arrive by the end of} \\ & \text{time period t under scenario q;} \\ 0 & \text{otherwise} \end{cases} \quad q \in \Theta, f \in \Phi, \\ t \in \{Arr_f..T+1\} \end{cases}$$

$$\boldsymbol{Y}_{f,t}^{q} = \begin{cases} 1 & \text{if flight f is released for departure by the end of} \\ & \text{time period t under scenario q;} \\ 0 & \text{otherwise} \end{cases} \quad \begin{aligned} q \in \Theta, f \in \Phi, \\ t \in \{Dep_f..T+1\} \end{aligned}$$

 W_t^q = number of aircraft subject to airborne queuing delay at time t for one or more time periods, under scenario q

Objective Function

$$Min \sum_{q \in \{1..Q\}} P_{q} \times \left\{ \left[\sum_{f \in \{1..F\}} \sum_{t=Arr_{f}}^{T+1} (t - Arr_{f}) \times (X_{f,t}^{q} - X_{f,t-1}^{q}) \right] + \lambda \times \sum_{t=1}^{T} W_{t}^{q} \right\}$$

Constraints

Decision Variables Non Decreasing

$$X_{f,t}^{q} - X_{f,t-1}^{q} \ge 0; \quad \forall f \in \Phi, q \in \Theta, t \in \{Arr_f ..T + 1\}$$

Planned Departure Time of Flights

$$Y_{f,t}^{q} = \begin{cases} X_{f,t+Arr_f}^{q} - Dep_f ; if & t + Arr_f - Dep_f \leq T \\ 1 & otherwise \end{cases}$$

Arrival Capacity

$$W_{t-1}^{q} - W_{t}^{q} + \sum_{f \in \Phi} \left(X_{f,t}^{q} - X_{f,t-1}^{q} \right) \le M_{t}^{q}; \quad t \in \{1..T+1\}, q \in \Theta$$

Feasibility Conditions

$$W_0^q = W_{T+1}^q = 0$$

$$X_{f,T+1}^{q} = 1 \quad \forall f \in \Phi, q \in \Theta$$

Coupling Constraints for Ground Holding Decision Variables

Static vs Dynamic Formulation

- ☐ Static Stochastic Model (Ball et al 2003, Richetta-Odoni 1993) is a special case of dynamic model.
- □ The decisions are taken once at the beginning of day and not revised later.

 $X_{f,t}^q$ is same for all $q \in \Theta$; i.e., superscript q in the decision variables can be dropped.

Therefore, $X_{f,t}^q$ can be denoted as $X_{f,t}$; $\forall q \in \Theta$

Similarly,
$$Y_{f,t}^q = Y_{f,t}; \forall q \in \Theta$$

Example

Probability Mass Function: $P\{\xi_1\} = 0.5; P\{\xi_2\} = 0.3; P\{\xi_3\} = 0.1; P\{\xi_4\} = 0.1$

Scenario Tree

Flight No.	Dep.	Arr.	Decision Stage	Ric		a-Od odel	loni	Mukherjee- Hansen Model (Optimal Solution 1)				Mukherjee- Hansen Model (Optimal Solution 2)			
				ξ_1	ξ_2	ξ_3	ξ_4	ξ_1	ξ_2	ξ_3	ξ_4	ξ_1	\mathcal{L}_2	ξ_3	ξ_4
2	6	7	1	3	3	3	3	1	2	5	5	1	2	4	4
3	2	8	1	0	0	0	0	1	1	1	1	1	1	1	1
7	5	9	1	0	0	0	0	0	0	0	0	0	0	0	0
8	7	9	2	0	3	3	3	0	1	2	2	0	1	3	3
12	9	11	3	0	0	1	1	0	0	1	1	0	0	1	1

Expected Cost of Delay

Cumulative Arrivals at DFW

July14_2003

Time of Day

Probability Mass Function

$$P\{\xi_1\} = 0.4; P\{\xi_2\} = 0.2; P\{\xi_3\} = 0.1; P\{\xi_4\} = 0.1; P\{\xi_5\} = 0.1; P\{\xi_6\} = 0.1$$

Cost Ratio
$$\lambda = 3$$

Scenario Tree for Baseline Case

Other Cases

Case 2: Change in Cost Ratio. $\lambda = 25$

Case 3: Change in PMF

$$P\{\xi_1\} = 0.1; P\{\xi_2\} = 0.1; P\{\xi_3\} = 0.1; P\{\xi_4\} = 0.1; P\{\xi_5\} = 0.2; P\{\xi_6\} = 0.4$$

Case 4: Early Branching. Scenarios are realized 30 minutes earlier

Results: Baseline Case

- Mukherjee-HansenModel
 - ☐ Ground delays more severe
 - ☐ Less airborne delays
 - ☐ Total expected cost least
- Delay reduction compared to Static Model
 - ☐ 10% in Mukherjee-Hansen Model
 - □ 2% in Richetta-Odoni

Planned Arrival Rates in Baseline Case													
Time Period	Mukherjee-Hansen Model					Richetta-Odoni Model							
	ξ_1	ξ_2	ξ_3	ξ_4	بر 55	ξ_6	\mathcal{L}_1	ξ_2	ξ_3	ξ_4	ξ ₅	ξ_6	
9:00AM- 9:15AM	33	25	25	25	25	25	35	34	34	34	34	34	
9:15 AM-9:30 AM	16	5	5	5	5	5	14	14	14	14	14	14	
9:30AM-9:45AM	12	26	18	18	18	18	12	12	12	12	12	12	
9:45AM- 10:00AM	20	25	12	12	12	12	20	21	13	13	13	13	
10:00AM- 10:15AM	12	12	33	33	33	33	12	12	20	20	20	20	

Cases 2 and 3

- No airborne delays
- Static model plans for worst scenario
- Dynamic models adaptive to changing conditions
- Delays are higher in case 3 due to high probability of worse conditions

Case 4: 30 Minutes Early Information

- Static model produces same delays as in baseline case
 - Value of early information
- Mukherjee-HansenModel
 - Least delays
 - □ Absorbs most of the delay by ground holding

Perfect Information Case

Alternative Objective Functions

Minimizing Expected Squared Deviation from RBS Allocation

$$\min_{\substack{Q \in \{1..Q\}}} \sum_{f \in \{1..F\}} \sum_{t = Arr_f}^{T+1} \left(t - RBS_f^q\right)^2 \times \left(X_{f,t}^q - X_{f,t-1}^q\right) \right] + \lambda \times \sum_{t=1}^{T} W_t^q$$

$$\frac{\text{Multi-Criteria Optimization}}{ \begin{cases} \sum\limits_{f \in \Phi} \sum\limits_{t = Arr_f}^{T+1} \left(t - Arr_f\right) \times (X_{f,t} - X_{f,t-1}) \\ f \in \Phi \ t = Arr_f \end{cases} } \\ Min \sum\limits_{q \in \{1..Q\}} \sum\limits_{t \in \Phi} \left[\sum\limits_{f \in \Phi} \sum\limits_{t = Arr_f}^{T+1} \left(t - RBS_f\right)^2 \times (X_{f,t} - X_{f,t-1}) \right] + \\ \sum\limits_{t \in \Phi} \sum\limits_{t \in \Phi} \sum\limits_{t = 1}^{T} \left(t - RBS_f\right)^2 \times (X_{f,t} - X_{f,t-1}) \right] + \\ \sum\limits_{t \in \Phi} \sum\limits_{t \in \Phi} \sum\limits_{t \in \Phi} \left(t - RBS_f\right)^2 \times \left(X_{f,t} - X_{f,t-1}\right) \right] + \\ \sum\limits_{t \in \Phi} \sum\limits_{t \in \Phi} \sum\limits_{t \in \Phi} \left(t - RBS_f\right)^2 \times \left(X_{f,t} - X_{f,t-1}\right) \right] + \\ \sum\limits_{t \in \Phi} \sum\limits_{t \in \Phi} \sum\limits_{t \in \Phi} \left(t - RBS_f\right)^2 \times \left(X_{f,t} - X_{f,t-1}\right) \right] + \\ \sum\limits_{t \in \Phi} \sum\limits_{t \in \Phi} \sum\limits_{t \in \Phi} \left(t - RBS_f\right)^2 \times \left(X_{f,t} - X_{f,t-1}\right) \right] + \\ \sum\limits_{t \in \Phi} \sum\limits_{t \in \Phi} \left(t - RBS_f\right)^2 \times \left(X_{f,t} - X_{f,t-1}\right) \right] + \\ \sum\limits_{t \in \Phi} \sum\limits_{t \in \Phi} \left(t - RBS_f\right)^2 \times \left(X_{f,t} - X_{f,t-1}\right)^2 \times \left(X_{f,t} - X_{f,t-1}\right)^2 + \\ \sum\limits_{t \in \Phi} \sum\limits_{t \in \Phi} \left(t - RBS_f\right)^2 \times \left(X_{f,t} - X_{f,t-1}\right)^2 \times \left(X_{f,t} - X_{f,t-1}\right)^2 + \\ \sum\limits_{t \in \Phi} \sum\limits_{t \in \Phi} \left(t - RBS_f\right)^2 \times \left(X_{f,t} - X_{f,t-1}\right)^2 \times \left(X_{f,t} - X_{f,t-1}\right)^2 + \\ \sum\limits_{t \in \Phi} \sum\limits_{t \in \Phi} \left(t - RBS_f\right)^2 \times \left(X_{f,t} - X_{f,t-1}\right)^2 \times \left$$

Work in Progress

- □ Reformulating the model as a minimum cost network flow problem.
- □ Ability to handle time varying unconditional probabilities of the capacity scenarios

Acknowledgements

□ Authors are thankful to Prof. Mike Ball for his thoughtful suggestions on this research.