

Aggregate Airspace Congestion Modeling

David Lovell Department of Civil and Environmental Engineering & Institute for Systems Research University of Maryland College Park, MD

joint work with Michael Ball, Yufeng Tu, and Bala Chandran

1

Evolving from Monitor Alert

- Improvements
 - Queueing effects in the NAS caused by capacity restrictions
 - Stochastic departure times of aircraft
- •Applications
 - Collaborative decision-making and schedule refinement
 - Congestion alerts over the course of the day
- Outputs
 - Probability of congestion in sector *x* at time *t*
 - •_Distribution of delays to flights
 - Airspace capacity estimation

Issues related to model scale

- Microscopic simulation models are OK when time is plentiful
- Our goal: rougher estimates in a single pass
- Limited network topology
- Fluid modeling of "probability flows" continuum diffusion equations operating on tandem queues
- Convergence, or "laws of large numbers"

Propagation of "probability packets"

Example of interaction effects

Preliminary results

• Bala attempted to categorize interactions according to some degree of severity: "strong" and "weak" and developed heuristic methods to handle these situations:

Flight No	Predicted	Actual
	Travel Time	Travel Time
119	119.555	116.199
340	111.755	114.744
954	356.743	364.500