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BackgroundBackground

Weather is one of the primary factors in air traffic delay

Delay Distribution, June 2000
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(According to FAA, from Robust Dynamic Routing of Aircraft under Uncertainty, Nilim et al.)
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BackgroundBackground

Current practice of ATM: the predicted storm zones are 
avoided completely.
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BackgroundBackground

Unsatisfactory Forecast Performance
+

Complete Avoidance of the Predicted Storm Zones
||

Overly Conservative Routing Decisions
+

Much More Delays than the Unavoidable
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BackgroundBackground

How about…take a less conservative route
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BackgroundBackground

Dynamic routing strategies based on this concept were 
developed mostly under deterministic assumptions or in a 
simplified probabilistic setting
But weather is stochastic in nature...

⇒ Investigate ways to provide probabilistic 
convective weather forecasts with higher 
accuracy in terms of convective activity 
probabilities for flight links to support real-
time aircraft routing decision.
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IntroductionIntroduction
Goal: provide a better prediction of convective weather in 
explicit probabilities defined specifically in the aircraft 
routing context to aid aircraft routing decision-making

Approach: develop a stochastic model depicting the 
evolution of the convective weather

Modeling framework: take the evolution of convective 
weather as a Markov process ⇒ Future event can be 
predicted based on current information

Markov Model
Hidden Markov Model
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Markov ModelMarkov Model

First order Markov chain
− finite states (i.e. weather states)
− future state Sn+1, is 

independent of the past states 
and depends only on the 
present state Sn

− Transition probabilities 
Pij
= P{Sn+1= j | Sn = i, Sn-1 = in-1, …, 

S1 = i1, S0 = i0}
= P{Sn+1= j | Sn = i}
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Seeing isnSeeing isn’’t believingt believing

What we observe does not 
necessarily have 1-1 
mapping on the state that 
the system is in -- the state 
of the system is hidden

Example: deduce the 
weather from a piece of 
seaweed

Hidden Markov Model!
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Modeling FrameworksModeling Frameworks

Markov Model

Hidden Markov 
Model (HMM)
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Model Definition Model Definition -- Markov ModelMarkov Model

First-order Markov Model is fully characterized by the 
transition probabilities
Example: Three states--State 1, State 2, State 3 

Transition Matrix To
From State 1 State 2 State 3
State 1 0.5 0.4 0.1
State 2 0.2 0.6 0.2
State 3 0.1 0.4 0.5
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Model Development & Prediction Model Development & Prediction --
Markov ModelMarkov Model

Assume this is a discrete time Markov chain (transition 
occurs every t minutes)
Model parameters: the transition probabilities
Estimate the parameters directly from the data (the 
maximum likelihood estimator)

Prediction: Given the current states, the prediction for n 
periods later could be made by applying the transition 
probabilities n times

istatetovisitsof
jstatetoistatefromstransitionofPij #

#ˆ =
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Model Definition Model Definition -- Hidden Markov ModelHidden Markov Model

A HMM is defined by
– number of states
– initial state probabilities
– state transition matrix
– confusion matrix (emission probabilities)

Confusion Matrix Transition Matrix
p(1 | *) p(2 | *) p(3 | *) p(4 | *) p(5 | *) p(Low | *) p(Med | *) p(High | *) p(End | *)

p(* | Low) 0.319 0.261 0.227 0.128 0.065 0.555 0.386 0.051 0.008
p(* | Med) 0.117 0.168 0.277 0.282 0.155 0.353 0.302 0.314 0.031
p(* | High) 0.115 0.133 0.291 0.263 0.198 0.12 0.417 0.432 0.031
p(* | Begin) 0.72014 0.15897 0.1209
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Model Development & Prediction Model Development & Prediction --
Hidden Markov ModelHidden Markov Model

Model parameters estimation (transition & confusion matrices)

– Baum-Welch Algorithm
– Posterior probabilities - Forward & Backward algorithms
– EM algorithm - maximum likelihood with missing data

Determine current hidden state
– Viterbi Algorithm

– Given the output state sequence and the model 
parameters

– Determine the most probable state path
Prediction
– Current state + confusion matrix => probabilistic 

prediction of future weather
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Problem SetupProblem Setup
Given: An output sequence: O0, …, On

Assume: the output sequence is generated by a HMM
Objective function to maximize:

P(O0, …, On) -- the log-likelihood of having this output sequence
Hypothetical parameters / decision variables: 

Transition probabilities
Emission probabilities
Initial and end hidden state probabilities

Techniques to estimate the model parameters:
Calculate forward and backward probabilities recursively based on 
hypothetical parameters
Estimate the parameters (based on multiple output sequences)
Iterate till the objective function value reaches convergence
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Finding the most probable hidden Finding the most probable hidden 
state path (state path (ViterbiViterbi algorithm)algorithm)

Convective Activities

Low

Medium

High

State = 1 State  = 4 State = 3
Observable States

Given: 
An output sequence
HMM parameters: Transition and Confusion matrices
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Data SourceData Source

MIT Lincoln Lab Corridor 
Integrated Weather 
System (CIWS) products

Coverage: The Northeast 
Corridor in the United 
States ~ 4 million 1 km x 
1km cells, ~700k valid 
cells
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Data SourceData Source

Convective weather states are labeled with Video 
Integrator and Processor (VIP) levels from 0 to 6
VIP level ≥ 3: not flyable

Data include both actual and forecasts
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Unit Area for Evaluation Unit Area for Evaluation -- Flight LinkFlight Link

Raw data: values for 1 km x 1km cells
Assume en route flight speed ~ 500 mi
Dimension of unit area

Length: distance traveled in 5 min. : ~60 km
Width: flight path width: ~ 12km

Strip level = max{cell level1, …, cell level60}
Band level = min{strip level1, …, strip level12}
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A Case StudyA Case Study
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ImplementationImplementation

Data set: Aug 24, 2002, 46 time points, 5 minutes apart

Coded in Java
Steps:

Determine the storm level for the flight links
Define the hidden states and output states
HMM parameter estimation using Baum-Welch algorithm
Use Viterbi algorithm to find the most probable current state
Use transition and confusion matrices to predict storm 
levels at future time periods (12 periods -- 1 hour)
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Implementation DecisionsImplementation Decisions

Number of hidden states: 3
Number of output states: 5
Seed matrices
Stopping rule for algorithm iterations: 
| difference of two consecutive LLs | < 0.1

Confusion Matrix Transition Matrix
p(1 | *) p(2 | *) p(3 | *) p(4 | *) p(5 | *) p(Low | *) p(Med | *) p(High | *) p(End | *)

p(* | Low) 0.3 0.3 0.2 0.1 0.1 0.5 0.4 0.05 0.05
p(* | Med) 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.1
p(* | High) 0.1 0.2 0.2 0.2 0.3 0.1 0.4 0.4 0.1
p(* | Begin) 0.5 0.3 0.2

VIP level Output 
0 1
1 2
2 3
3
4
5
6

4

5
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Estimation ExperienceEstimation Experience

With different seed transition matrices
Matrices with difference within certain range yield similar 
estimated parameters
Matrices with significant difference yield drastically different
result parameters
Known issue of HMM parameter estimation: converging to 
local maximum

Runtime statistics

Hardware: Pentium III processor, 128 MB RAM

# of locations 10 611 611
# of training periods 46 30 46
# of iterations 39 18 18
Log-Likelihood -763.203 -16660.1 -23729.6
Estimation time (millisec) 330 3410 5060
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Parameter estimation resultsParameter estimation results

Number of locations: 611
Number of time periods: 20
Number of iterations: 18
Log-likelihood: -16660.136
Elapsed time for parameter estimation: 3290  milliseconds
Initial state probabilities: [0.586, 0.208, 0.205]

Transition probabilities Emission probabilities
from \ to state 0 state 1 state 2 from \ emit 1 2 3 4 5
state 0 0.9365 0.0297 0.0008 state 0 0.1694 0.8108 0.0199 4.76E-18 1.03E-19
state 1 0.0731 0.8478 0.0498 state 1 1.04E-05 0.0488 0.8980 0.0533 5.34E-12
state 2 0.0021 0.0326 0.9278 state 2 3.78E-34 3.39E-08 0.0108 0.6237 0.3655
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Sample Prediction ResultsSample Prediction Results

2434Actual State

0.070.210.050.21P(Observable State = 5)

0.140.370.250.38P(Observable State = 4)

0.170.250.390.24P(Observable State = 3)

0.330.120.240.12P(Observable State = 2)

0.290.050.070.05P(Observable State = 1)t=10

1423Actual State

0.070.260.060.17P(Observable State = 5)

0.150.380.170.25P(Observable State = 4)

0.190.240.210.42P(Observable State = 3)

0.280.090.330.12P(Observable State = 2)

0.310.030.230.04P(Observable State = 1)t=5

1423Actual Statet=0

1523Actual Statet=-5

2524Actual Statet=-10

1513Actual Statet=-15

2412Actual Statet=-20

Band 4Band 3Band 2Band 1Time
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Model Forecast ResultsModel Forecast Results
Hidden Markov Model Markov Model

15 min ahead
Actual Condition Flyable Not Flyable
Flyable 90.85% 9.15%
Not Flyable 25.28% 74.72%

Probability of Prediction

30 min ahead
Actual Condition Flyable Not Flyable
Flyable 87.60% 12.40%
Not Flyable 31.83% 68.17%

Probability of Prediction

45 min ahead
Actual Condition Flyable Not Flyable
Flyable 84.25% 15.75%
Not Flyable 40.75% 59.25%

Probability of Prediction

60 min ahead
Actual Condition Flyable Not Flyable
Flyable 82.18% 17.82%
Not Flyable 47.95% 52.05%

Probability of Prediction

15 min ahead
Actual Condition Flyable Not Flyable
Flyable 90.08% 9.92%
Not Flyable 29.27% 70.73%

Probability of Prediction

30 min ahead
Actual Condition Flyable Not Flyable
Flyable 86.23% 13.77%
Not Flyable 38.31% 61.70%

Probability of Prediction

45 min ahead
Actual Condition Flyable Not Flyable
Flyable 82.42% 17.59%
Not Flyable 48.52% 51.48%

Probability of Prediction

60 min ahead
Actual Condition Flyable Not Flyable
Flyable 80.28% 19.73%
Not Flyable 55.37% 44.63%

Probability of Prediction
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Performance of HMMPerformance of HMM
Performance over time - Hidden Markov Model
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Performance of Markov ModelPerformance of Markov Model
Performance over time - Markov Model
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Model Comparison (1)Model Comparison (1)
Model Comparison: Actual Flyable, Predict Not Flyable
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Model Comparison (2)Model Comparison (2)
Model Comparison: Actual Not Flyable, Predict Flyable
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ConclusionsConclusions

Need for properly defined probabilistic convective 
weather forecasts
Potential for Markovian models to provide such forecasts
The states are defined in the context of airline application 
-- link-based states vs. cell-based states
HMM shows promise in modeling convective weather in 
terms of performance and computation
Further investigation using NHMM as modeling 
framework
Future work to incorporate the convective weather 
forecasts in aircraft routing decision-making
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Questions?Questions?
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AppendixAppendix
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Parameter Estimation for Parameter Estimation for 
HMMHMM
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Probability of observed dataProbability of observed data

∑ −
nSS

nnenntreinit SOPSSPSOPSP
,...,

1000
0

)|()|()...|()(

Computing of the observed sequence involves summing over 
many possible hidden state sequences:

P(O0, …, On) = 

S0 S1 S2
...

O0 O1 O2

Sn-1 Sn

On-1 On
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Forward updatesForward updates

Forward probabilities αt(i) = P(O0, …, Ot, St = i)
α0(1) = Pinit(1)Pe(heads | 1)
α0(2) = Pinit(2)Pe(heads | 2)
α1(1) = [α0(1)Ptr(1 | 1) + α0(2) Ptr(1 | 2)] Pe(tails | 1)
α1(2) = [α0(1)Ptr(2 | 1) + α0(2) Ptr(2 | 2)] Pe(tails | 2)

Generalized form:
α0(i) = Pinit(S0 = i)Pe(O0 | S0 = i)
αt(i) = [    αt-1(j)Ptr(St = i | St-1 = j)] Pe(Ot | St = i)

St =1

S0 S1 S2

St =2

O0 = heads O1 = tails O2 = heads

∑
j
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Backward updatesBackward updates

Backward probabilities βt(i) = P(Ot+1, …, On | St = i)
β2(1) = Pend(1)
β2(2) = Pend(2)
β1(1) = Ptr(1 | 1)Pe(heads | 1) β2(1) + Ptr(2 | 1)Pe(heads | 2) β2(2)
β1(2) = Ptr(1 | 2)Pe(heads | 1) β2(1) + Ptr(2 | 2)Pe(heads | 2) β2(2)

Generalized form:
βn(i) = Pend(i)
βt-1(i) =    Ptr(St = j | St-1 = i)Pe(Ot | St = j) βt(j)

St =1

S0 S1 S2

St =2

O0 = heads O1 = tails O2 = heads

∑
j



38

ForwardForward--backward probabilitiesbackward probabilities
... St St+1

Ot Ot+1

Sn-1 Sn

On-1 On

S0

O0

Current estimate about St : αt(i) = P(O0, …, Ot, St = i)
Future evidence about  St : βt(i) = P(Ot+1, …, On | St = i)

The probability of generating the observations and going 
through state i at time t is: 
P(O0, …, On, St = i) = αt(i) βt(i)

P(O0, …, On) =    αt(j) βt(j)              for t = 0, 1, …, n
The posterior probability that the HMM was in a particular state
i at time t is:
P(St = i | O0, …, On) = [αt(i) βt(i)] / [    αt(j) βt(j) ]

= xt(i)

∑
j

∑
j



39

ForwardForward--backward probabilitiesbackward probabilities

Current estimate about St :    αt(i) = P(O0, …, Ot, St = i)
Future evidence about  St+1 : βt+1(j) = P(Ot+2, …, On | St+1 = j)

The posterior probability that the HMM was in a particular state
i at time t and transitioned to state j at time t+1 is:
P(St = i, St+1 = j | O0, …, On) 
= [αt(i) Ptr(St+1 = j | St = i)Pe(Ot+1 | St+1 = j) βt+1(j)] / [    αt(j) βt(j) ]
= yt(i, j)

∑
j
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EM algorithm for EM algorithm for HMMsHMMs

Assume there are M observation sequences:
O0

(m), … Onm
(m)

E-step: compute the posterior probabilities:
xt

(m) (i)                 for all m, i, and t (t = 0, …, nm)
yt

(m) (i, j)              for all m, i, j, and t (t = 0, …, nm-1)

M-step: 
Initial state probabilities
Transition probabilities
Emission probabilities
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MM--step: initial state probabilitiesstep: initial state probabilities

Initial state probabilities
= expected fraction of times the sequences  

started from a specific state i

∑
=

=
M

m

m
init iX

M
iP

1

)(
0 )(1)(ˆ
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MM--step: transition probabilitiesstep: transition probabilities

Transition probabilities:

where the expected number of transitions from i to j :

∑
==

j
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MM--step: emission probabilitiesstep: emission probabilities

The emission probabilities:

where the expected number of times a particular 
observation k was generated from a specific state i:

where  
= 0           otherwise
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Different seed transition matricesDifferent seed transition matrices
NumLocations: 611
NumTimePeriods: 46
Num of iterations: 10
Elapsed time in milliseconds 2580
Initial state probabilities
0.55654 0.23009 0.21337

End state probabilities
0.02222 0.01828 0.0234

Emission probabilities
state\out 1 2 3 4 5
Low 0.16612 0.82345 0.01043 4.28E-11 1.61E-13
Med 2.45E-06 0.09386 0.87669 0.02945 3.48E-09
High 6.55E-17 9.73E-07 0.01533 0.66011 0.32456

Transition probabilities

From\To Low Med High
Low 0.94807 0.02931 4.01E-04
Med 0.08224 0.84123 0.05825
High 4.68E-04 0.04093 0.9352

Seed transition matrix
0.4 0.35 0.2
0.2 0.55 0.2
0.2 0.35 0.4

NumLocations: 611
NumTimePeriods: 46
Num of iterations: 10
Elapsed time in milliseconds 2530
Initial state probabilities
0.57251 0.21542 0.21208

End state probabilities
0.02227 0.01814 0.0233

Emission probabilities
state\out 1 2 3 4 5
Low 0.16366 0.82105 0.01528 5.50E-11 4.65E-14
Med 1.00E-05 0.06882 0.89743 0.03374 9.10E-09
High 9.18E-18 2.02E-06 0.01307 0.66082 0.32611

Transition probabilities

From\To Low Med High
Low 0.95002 0.02681 8.93E-04
Med 0.07868 0.84403 0.05915
High 0.00147 0.04039 0.93485

Seed transition matrix

0.5 0.3 0.19
0.25 0.5 0.24
0.19 0.3 0.5

NumLocations: 611
NumTimePeriods: 46
Num of iterations: 10
Elapsed time in milliseconds 2580
Initial state probabilities
0.17656 0.68426 0.13919

End state probabilities
0.02436 0.02142 0.02044

Emission probabilities
state\out 1 2 3 4 5
Low 0.25516 0.01706 0.03098 0.48381 0.21299
Med 0.00568 0.71909 0.26892 0.00631 6.9E-10
High 0.24117 0.0137 0.02188 0.47264 0.25062

Transition probabilities

From\To Low Med High
Low 0.35187 0.05386 0.56991
Med 0.01494 0.9541 0.00955
High 0.52316 0.03105 0.42535

Seed transition matrix

0.2 0.35 0.4
0.2 0.55 0.2

0.4 0.35 0.2



45

Video Integrator and ProcessorVideo Integrator and Processor
(VIP) Levels(VIP) Levels

VIP Level Reflectivity (dBZ) Precipitation Description
0 < 18
1 [18, 30) Light (Mist)
2 [30, 41) Moderate
3 [41, 46) Heavy
4 [46, 50) Very Heavy
5 [50, 57) Intense
6 > 57 Extreme
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