Toward Probabilistic Forecasts of Convective Storm Activity for En Route Air Traffic Management

P. Barry Liu
Prof. Mark Hansen
University of California, Berkeley

September 25th, 2003

Background

Weather is one of the primary factors in air traffic delay

(According to FAA, from Robust Dynamic Routing of Aircraft under Uncertainty, Nilim et al.)

NEXTOR

Background

\square Current practice of ATM: the predicted storm zones are avoided completely.

Background

Unsatisfactory Forecast Performance $+$

Complete Avoidance of the Predicted Storm Zones
\|
Overly Conservative Routing Decisions
$+$
Much More Delays than the Unavoidable

NEXTOR

Background

- How about...take a less conservative route

Background

- Dynamic routing strategies based on this concept were developed mostly under deterministic assumptions or in a simplified probabilistic setting
B But weather is stochastic in nature...
\Rightarrow Investigate ways to provide probabilistic convective weather forecasts with higher accuracy in terms of convective activity probabilities for flight links to support realtime aircraft routing decision.

Introduction

- Goal: provide a better prediction of convective weather in explicit probabilities defined specifically in the aircraft routing context to aid aircraft routing decision-making
\square Approach: develop a stochastic model depicting the evolution of the convective weather
] Modeling framework: take the evolution of convective weather as a Markov process \Rightarrow Future event can be predicted based on current information
\square Markov Model
\square Hidden Markov Model

NEXTOR

Markov Model

- First order Markov chain
- finite states (i.e. weather states)
- future state S_{n+1}, is independent of the past states and depends only on the present state S_{n}
- Transition probabilities

Pij

$$
\begin{aligned}
= & P\left\{S_{n+1}=j \mid S_{n}=i, S_{n-1}=i_{n-1}, \ldots,\right. \\
& \left.S_{1}=i_{1}, S_{0}=i_{0}\right\} \\
= & P\left\{S_{n+1}=j \mid S_{n}=i\right\}
\end{aligned}
$$

Seeing isn't believing

\square What we observe does not necessarily have 1-1 mapping on the state that the system is in -- the state of the system is hidden

- Example: deduce the weather from a piece of seaweed

\Rightarrow Hidden Markov Model!

NEXTOR

Modeling Frameworks

\square Markov Model

$$
\longrightarrow \quad \longrightarrow \quad \longrightarrow \quad \longrightarrow
$$

\square Hidden Markov Model (HMM)

NEXTOR

Model Definition - Markov Model

- First-order Markov Model is fully characterized by the transition probabilities
E Example: Three states--State 1, State 2, State 3

Transition Matrix		To	State 3
From	State 1	State 2	
State 1	0.5	0.4	0.1
State 2	0.2	0.6	0.2
State 3	0.1	0.4	0.5

NEXTOR

Model Development \& Prediction -

 Markov Model- Assume this is a discrete time Markov chain (transition occurs every t minutes)
- Model parameters: the transition probabilities
- Estimate the parameters directly from the data (the maximum likelihood estimator)
$\hat{P}_{i j}=\frac{\# \text { of transitions from state } i \text { to state } j}{\# \text { of visits to state } i}$
\square Prediction: Given the current states, the prediction for n periods later could be made by applying the transition probabilities n times

NEXTOR

Model Definition - Hidden Markov Model

- A HMM is defined by
- number of states
- initial state probabilities

- state transition matrix
- confusion matrix (emission probabilities)

	Confusion Matrix					Transition	Matrix		
	$p(1 \mid *)$	$p\left(\left.2\right\|^{*}\right)$	$\mathrm{p}(3 \mid *)$	$\mathrm{p}\left(4{ }^{*}\right)$	$\mathrm{p}(5 \mid *)$	p(Low ${ }^{*}$)	p(Med ${ }^{*}$)	$\mathrm{p}($ High \| *)	p(End $\left.\right\|^{*}$)
p(* Low)	0.319	0.261	0.227	0.128	0.065	0.555	0.386	0.051	0.008
p(* \mid Med)	0.117	0.168	0.277	0.282	0.155	0.353	0.302	0.314	0.031
p(* \| High)	0.115	0.133	0.291	0.263	0.198	0.12	0.417	0.432	0.031
p(* \mid Begin						0.72014	0.15897	0.1209	

NEXTOR

Model Development \& Prediction Hidden Markov Model

- Model parameters estimation (transition \& confusion matrices)
- Baum-Welch Algorithm
- Posterior probabilities - Forward \& Backward algorithms
- EM algorithm - maximum likelihood with missing data
\square Determine current hidden state
- Viterbi Algorithm
- Given the output state sequence and the model parameters
- Determine the most probable state path
- Prediction
- Current state + confusion matrix => probabilistic prediction of future weather

\square Given: An output sequence: $\mathrm{O}_{0}, \ldots, \mathrm{O}_{\mathrm{n}}$
\square Assume: the output sequence is generated by a HMM
\square Objective function to maximize:
$\square \mathrm{P}\left(\mathrm{O}_{0}, \ldots, \mathrm{O}_{n}\right)$-- the log-likelihood of having this output sequence
\square Hypothetical parameters / decision variables:

- Transition probabilities
\square Emission probabilities
\square Initial and end hidden state probabilities
\square Techniques to estimate the model parameters:
\square Calculate forward and backward probabilities recursively based on hypothetical parameters
\square Estimate the parameters (based on multiple output sequences)
\square Iterate till the objective function value reaches convergence

Finding the most probable hidden state path (Viterbi algorithm)

- Given:
\square An output sequence
\square HMM parameters: Transition and Confusion matrices

Convective Activities

Data Source

- MIT Lincoln Lab Corridor Integrated Weather System (CIWS) products
- Coverage: The Northeast Corridor in the United States ~ 4 million $1 \mathrm{~km} x$ 1 km cells, $\sim 700 \mathrm{k}$ valid cells

Coverage of sensors integrated in the 2002 CIWS demonstration.

Data Source

C Convective weather states are labeled with Video Integrator and Processor (VIP) levels from 0 to 6

- VIP level ≥ 3 : not flyable
\square Data include both actual and forecasts

200500	39.212509	75.008893	1
200500	39.212509	74.985601	1
200500	39.212509	74.962309	1
200500	39.212509	74.939018	1
200500	39.212509	74.915726	1
200500	39.212509	74.892435	1
200500	39.212509	74.869143	1
200500	39.212509	74.845852	1
200500	39.212509	74.822560	1
200500	39.212509	74.799269	1
200500	39.212509	74.775977	1
200500	39.212509	74.752685	1
200500	39.212509	74.729394	1
200500	39.212509	74.706102	1
200500	39.212509	74.682811	1
200500	39.212509	74.659519	1
200500	39.212509	74.636226	1
200500	39.212509	74.612936	1
200500	39.212509	74.589645	1
200500	39.212509	74.566353	1
200500	39.212509	74.543061	1

NEXTOR

Unit Area for Evaluation - Flight Link

Raw data: values for $1 \mathrm{~km} \times 1 \mathrm{~km}$ cells
A Assume en route flight speed $\sim 500 \mathrm{mi}$

- Dimension of unit area
\square Length: distance traveled in 5 min . : $\sim 60 \mathrm{~km}$
\square Width: flight path width: ~12km
- Strip level $=\max \left\{\right.$ cell level ${ }_{1}, \ldots$, cell level $\left.{ }_{60}\right\}$
\square Band level $=\min \left\{\right.$ strip level ${ }_{1}, \ldots$, strip level $\left.{ }_{12}\right\}$

A Case Study

Implementation

- Data set: Aug 24, 2002, 46 time points, 5 minutes apart
- Coded in Java

\square Steps:
\square Determine the storm level for the flight links
\square Define the hidden states and output states
- HMM parameter estimation using Baum-Welch algorithm
\square Use Viterbi algorithm to find the most probable current state
\square Use transition and confusion matrices to predict storm levels at future time periods (12 periods -- 1 hour)

NEXTOR

Implementation Decisions

- Number of hidden states: 3
- Number of output states: 5
- Seed matrices
- Stopping rule for algorithm iterations:

VIP leveI	Output
0	1
1	2
2	3
3	4
4	
5	5
6	

| difference of two consecutive LLs |<0.1

| Confusion Matrix | | | | Transition Matrix | | | | | |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
| | $\mathrm{p}\left(\left.1\right\|^{*}\right)$ | $\mathrm{p}\left(\left.2\right\|^{*}\right)$ | $\mathrm{p}\left(\left.3\right\|^{*}\right)$ | $\mathrm{p}\left(\left.4\right\|^{*}\right)$ | $\mathrm{p}\left(\left.5\right\|^{*}\right)$ | $\mathrm{p}\left(\right.$ Low $\left.\left.\right\|^{*}\right) \mathrm{p}\left(\right.$ Med $\left.\left.\right\|^{*}\right) \mathrm{p}\left(\right.$ High $\left.\left.\right\|^{*}\right) \mathrm{p}\left(\right.$ End $\left.\left.\right\|^{*}\right)$ | | | |
| $\mathrm{p}\left(^{*} \mid\right.$ Low $)$ | 0.3 | 0.3 | 0.2 | 0.1 | 0.1 | 0.5 | 0.4 | 0.05 | 0.05 |
| $\mathrm{p}\left(^{*} \mid\right.$ Med $)$ | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 | 0.1 |
| $\mathrm{p}\left(^{*} \mid\right.$ High $)$ | 0.1 | 0.2 | 0.2 | 0.2 | 0.3 | 0.1 | 0.4 | 0.4 | 0.1 |
| $\mathrm{p}\left(^{*} \mid\right.$ Begin $)$ | | | | | | 0.5 | 0.3 | 0.2 | |

Estimation Experience

- With different seed transition matrices
\square Matrices with difference within certain range yield similar estimated parameters
\square Matrices with significant difference yield drastically different result parameters
\square Known issue of HMM parameter estimation: converging to local maximum
- Runtime statistics

\# of locations	10	611	611
\# of training periods	46	30	46
\# of iterations	39	18	18
Log-Likelihood	-763.203	-16660.1	-23729.6
Estimation time (millisec)	330	3410	5060

Parameter estimation results

- Number of locations: 611
\square Number of time periods: 20
\square Number of iterations: 18
\square Log-likelihood: -16660.136
\square Elapsed time for parameter estimation: 3290 milliseconds
\square Initial state probabilities: [0.586, 0.208, 0.205]

Transition probabilities			state 2	Emission probabilities					
from \backslash to	state 0	state 1		from \backslash emit	1	2	3	4	5
state 0	0.9365	0.0297	0.0008	state 0	0.1694	0.8108	0.0199	$4.76 \mathrm{E}-18$	$1.03 \mathrm{E}-19$
state 1	0.0731	0.8478	0.0498	state 1	$1.04 \mathrm{E}-05$	0.0488	0.8980	0.0533	$5.34 \mathrm{E}-12$
state 2	0.0021	0.0326	0.9278	state 2	3.78E-34	3.39E-08	0.0108	0.6237	0.3655

Sample Prediction Results

Model Forecast Results

Hidden Markov Model

15 min ahead	Probability of Prediction	
Actual Condition	Flyable	Not Flyable
Flyable	90.85\%	9.15\%
Not Flyable	25.28\%	74.72\%
30 min ahead	Probability of Prediction	
Actual Condition	Flyable	Not Flyable
Flyable	87.60\%	12.40
Not Flyable	31.83\%	68.17\%
45 min ahead	Probability of Prediction	
Actual Condition	Flyable	Not Flyable
Flyable	84.25\%	15.75\%
Not Flyable	40.75\%	59.25\%
60 min ahead	Probability of Prediction	
Actual Condition	Flyable	Not Flyable
Flyable	82.18\%	17.82\%
Not Flyable	47.95\%	52.05\%

Markov Model

15 min ahead	Probability of Prediction	
Actual Condition	Flyable	Not Flyable
Flyable	90.08%	9.92%
Not Flyable	29.27%	70.73%

30 min ahead	Probability of Prediction	
Actual Condition	Flyable	Not Flyable
Flyable	86.23%	13.77%
Not Flyable	38.31%	61.70%

45 min ahead	Probability of Prediction	
Actual Condition	Flyable	Not Flyable
Flyable	82.42%	17.59%
Not Flyable	48.52%	51.48%

$\mathbf{6 0}$ min ahead	Probability of Prediction	
Actual Condition	Flyable	Not Flyable
Flyable	80.28%	19.73%
Not Flyable	55.37%	44.63%

Performance of HMM

Performance over time - Hidden Markov Model

Performance of Markov Model

Performance over time - Markov Model

Model Comparison (1)

Model Comparison: Actual Flyable, Predict Not Flyable

Model Comparison (2)

Model Comparison: Actual Not Flyable, Predict Flyable

Conc/usinns

D Need for properly defined probabilistic convective weather forecasts
[Potential for Markovian models to provide such forecasts

- The states are defined in the context of airline application -- link-based states vs. cell-based states
\square HMM shows promise in modeling convective weather in terms of performance and computation
- Further investigation using NHMM as modeling framework
- Future work to incorporate the convective weather forecasts in aircraft routing decision-making

Questions?

Appendix

Parameter Estimation for HMM

Probability of observed data

- Computing of the observed sequence involves summing over many possible hidden state sequences:

$$
\mathrm{P}\left(\mathrm{O}_{0}, \ldots, \mathrm{O}_{n}\right)=\sum_{S_{0}, \ldots S_{n}} P_{\text {init }}\left(S_{0}\right) P_{e}\left(O_{0} \mid S_{0}\right) \ldots P_{t r}\left(S_{n} \mid S_{n-1}\right) P_{e}\left(O_{n} \mid S_{n}\right)
$$

Forward updates

- Forward probabilities $\alpha_{t}(i)=P\left(\mathrm{O}_{0}, \ldots, \mathrm{O}_{\mathrm{t}}, \mathrm{S}_{\mathrm{t}}=\mathrm{i}\right)$
$\square \alpha_{0}(1)=P_{\text {init }}(1) P_{\mathrm{e}}($ heads $\mid 1)$
- $\alpha_{0}(2)=P_{\text {init }}(2) P_{e}($ heads $\mid 2)$
$\square \alpha_{1}(1)=\left[\alpha_{0}(1) \mathrm{P}_{\mathrm{tr}}(1 \mid 1)+\alpha_{0}(2) \mathrm{P}_{\mathrm{tr}}(1 \mid 2)\right] \mathrm{P}_{\mathrm{e}}($ tails $\mid 1)$
$\square \alpha_{1}(2)=\left[\alpha_{0}(1) P_{t r}(2 \mid 1)+\alpha_{0}(2) P_{t r}(2 \mid 2)\right] P_{\mathrm{e}}($ tails | 2)
- Generalized form:
$\square \alpha_{0}(i)=P_{\text {initit }}\left(S_{0}=i\right) P_{e}\left(O_{0} \mid S_{0}=i\right)$
$\square \alpha_{t}(i)=\left[\sum_{j} \alpha_{t-1}() P_{t r}\left(S_{t}=i \mid S_{t-1}=j\right)\right] P_{e}\left(O_{t} \mid S_{t}=i\right)$

NEXTOR

Backward updates

- Backward probabilities $\beta_{\mathrm{t}}(\mathrm{i})=\mathrm{P}\left(\mathrm{O}_{\mathrm{t}+1}, \ldots, \mathrm{O}_{\mathrm{n}} \mid \mathrm{S}_{\mathrm{t}}=\mathrm{i}\right)$

$$
\begin{aligned}
& \square \beta_{2}(1)=\mathrm{P}_{\mathrm{end}}(1) \\
& \beta_{2}(2)=\mathrm{P}_{\mathrm{end}}(2) \\
& \beta_{1}(1)=\mathrm{P}_{\mathrm{tr}}(1 \mid 1) \mathrm{P}_{\mathrm{e}}(\text { heads } \mid 1) \beta_{2}(1)+\mathrm{P}_{\mathrm{tr}}(2 \mid 1) \mathrm{P}_{\mathrm{e}} \text { (heads } \mid \text { 2) } \beta_{2}(2) \\
& \beta_{1}(2)=\mathrm{P}_{\mathrm{tr}}(1 \mid 2) \mathrm{P}_{\mathrm{e}}\left(\text { heads } \mid \text { 1) } \beta_{2}(1)+\mathrm{P}_{\mathrm{tr}}(2 \mid 2) \mathrm{P}_{\mathrm{e}}\left(\text { heads } \mid \text { 2) } \beta_{2}(2)\right.\right.
\end{aligned}
$$

\square Generalized form:
$\square \beta_{\mathrm{n}}(\mathrm{i})=\mathrm{P}_{\text {end }}(\mathrm{i})$
$\square \beta_{t-1}(i)=\sum_{j} P_{t r}\left(S_{t}=j \mid S_{t-1}=i\right) P_{e}\left(O_{t} \mid S_{t}=j\right) \beta_{t}(j)$

NEXTOR

Forward-backward probabilities

Current estimate about $\mathrm{S}_{\mathrm{t}}: \alpha_{\mathrm{t}}(\mathrm{i})=\mathrm{P}\left(\mathrm{O}_{0}, \ldots, \mathrm{O}_{\mathrm{t}}, \mathrm{S}_{\mathrm{t}}=\mathrm{i}\right)$
Future evidence about $S_{t}: \beta_{t}(i)=P\left(O_{t+1}, \ldots, O_{n} \mid S_{t}=i\right)$
. The probability of generating the observations and going through state i at time t is:

$$
\mathrm{P}\left(\mathrm{O}_{0}, \ldots, \mathrm{O}_{\mathrm{n}}, \mathrm{~S}_{\mathrm{t}}=\mathrm{i}\right)=\alpha_{\mathrm{t}}(\mathrm{i}) \beta_{\mathrm{t}}(\mathrm{i})
$$

ㅁ $\left.\left.P\left(\mathrm{O}_{0}, \ldots, \mathrm{O}_{\mathrm{n}}\right)=\sum_{\mathrm{t}} \alpha_{\mathrm{t}} \mathrm{j}\right) \beta_{\mathrm{t}} \mathrm{j}\right) \quad$ for $\mathrm{t}=0,1, \ldots, \mathrm{n}$

- The posterior probability that the HMM was in a particular state i at time t is:

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{~S}_{\mathrm{t}}=\mathrm{i} \mid \mathrm{O}_{0}, \ldots, \mathrm{O}_{\mathrm{n}}\right) & =\left[\alpha_{\mathrm{t}}(\mathrm{i}) \beta_{\mathrm{t}}(\mathrm{i})\right] /\left[\sum_{i} \alpha_{\mathrm{t}}(\mathrm{j}) \beta_{\mathrm{t}}(\mathrm{j})\right] \\
= & \left.x_{\mathrm{t}} \mathrm{i}\right)
\end{aligned}
$$

Forward-backward probabilities

Current estimate about $\mathrm{S}_{\mathrm{t}}: \quad \alpha_{\mathrm{t}}(\mathrm{i})=\mathrm{P}\left(\mathrm{O}_{0}, \ldots, \mathrm{O}_{\mathrm{t}}, \mathrm{S}_{\mathrm{t}}=\mathrm{i}\right)$
Future evidence about $\mathrm{S}_{\mathrm{t}+1}: \beta_{\mathrm{t}+1}(\mathrm{j})=\mathrm{P}\left(\mathrm{O}_{\mathrm{t}+2}, \ldots, \mathrm{O}_{\mathrm{n}} \mid \mathrm{S}_{\mathrm{t}+1}=\mathrm{j}\right)$
[. The posterior probability that the HMM was in a particular state i at time t and transitioned to state j at time $t+1$ is:

$$
\begin{aligned}
& P\left(S_{t}=\mathrm{i}, \mathrm{~S}_{\mathrm{t}+1}=\mathrm{j} \mid \mathrm{O}_{0}, \ldots, \mathrm{O}_{\mathrm{n}}\right) \\
& =\left[\alpha_{\alpha}(\mathrm{i}) \mathrm{P}_{\mathrm{tr}}\left(\mathrm{~S}_{\mathrm{t}+1}=\mathrm{j} \mid \mathrm{S}_{\mathrm{t}}=\mathrm{i}\right) \mathrm{P}_{\mathrm{e}}\left(\mathrm{O}_{\mathrm{t}+1} \mid \mathrm{S}_{\mathrm{t}+1}=\mathrm{j}\right) \beta_{\mathrm{t}+1}(\mathrm{j})\right] /\left[\sum_{j} \alpha_{\mathrm{t}}(\mathrm{j}) \beta_{\mathrm{t}}(\mathrm{j})\right] \\
& =y_{\mathrm{t}}(\mathrm{i}, \mathrm{j})
\end{aligned}
$$

EM algorithm for HMMs

\square Assume there are M observation sequences:
$\mathrm{O}_{0}{ }^{(m)}, \ldots \mathrm{O}_{\mathrm{nm}}{ }^{(m)}$
\square E-step: compute the posterior probabilities:
$\square x_{t}^{(m)}$ (i) for all m, i, and $t\left(t=0, \ldots, n_{m}\right)$
$\square y_{t}^{(m)}(i, j) \quad$ for all m, i, j, and $t\left(t=0, \ldots, n_{m-1}\right)$
\square M-step:
\square Initial state probabilities
\square Transition probabilities
\square Emission probabilities

M-step: initial state probabilities

\square Initial state probabilities
= expected fraction of times the sequences
started from a specific state i

$$
\hat{P}_{\text {init }}(i)=\frac{1}{M} \sum_{m=1}^{M} X_{0}^{(m)}(i)
$$

NEXTOR

M-step: transition probabilities

\square Transition probabilities:

$$
\hat{P}_{t r}(j \mid i)=\frac{\# \text { of transitions from i to } j}{\# \text { of visits to } i}=\frac{\hat{N}(i, j)}{\sum_{j} \hat{N}(i, j)}
$$

where the expected number of transitions from i to j :
$\hat{N}(i, j)=\sum_{m=1}^{M} \sum_{t=0}^{n-1} y_{t}^{(m)}(i, j)$

M-step: emission probabilities

\square The emission probabilities:
$\hat{P}_{e}(k \mid i)=\frac{\# \text { of outputs } k \text { while in state } i}{\# \text { of visits to } i}=\frac{\hat{N}_{0}(i, k)}{\sum_{k} \hat{N}_{0}(i, k)}$
where the expected number of times a particular observation k was generated from a specific state i :
$\hat{N}_{0}(i, k)=\sum_{m=1}^{M} \sum_{t=0}^{n_{m}} x_{t}^{(m)}(i) \delta\left(O_{t}^{(m)}, k\right)$
where $\delta\left(O_{t}^{(m)}, k\right)=1 \quad \begin{array}{ll}\text { if } O_{t}^{(m)}=k \\ & =0\end{array} \quad \begin{array}{ll}\text { otherwise }\end{array}$

Different seed transition matrices

NumLocations:			611		
NumTimePeriods:			46		
Num of iterations:			10		
Elapsed time in milliseconds			2580		
Initial state probabilities					
0.55654	0.23009	0.21337			
End state probabilities					
0.02222	0.01828	0.0234			
Emission probabilities					
statelout	1	2	3	4	5
Low	0.16612	0.82345	0.01043	4.28E-11	$1.61 \mathrm{E}-13$
Med	2.45E-06	0.09386	0.87669	0.02945	3.48E-09
High	$6.55 \mathrm{E}-17$	9.73E-07	0.01533	0.66011	0.32456
Transition probabilities					
FromlTo	Low	Med	High		
Low	0.94807	0.02931	4.01E-04		
Med	0.08224	0.84123	0.05825		
High	4.68E-04	0.04093	0.9352		
Seed transition matrix					
0.4	0.35	0.2			
0.2	0.55	0.2			
0.2	0.35	0.4			

NumLocations:			611		
NumTimePeriods:			46		
Num of iterations:			10		
Elapsed time in milliseconds			2530		
Initial state probabilities					
0.57251	0.21542	0.21208			
End state probabilities					
0.02227	0.01814	0.0233			
Emission probabilities					
statelout	1	2	3	4	5
Low	0.16366	0.82105	0.01528	5.50E-11	4.65E-14
Med	1.00E-05	0.06882	0.89743	0.03374	9.10E-09
High	9.18E-18	2.02E-06	0.01307	0.66082	0.32611
Transition probabilities					
FromlTo	Low	Med	High		
Low	0.95002	0.02681	8.93E-04		
Med	0.07868	0.84403	0.05915		
High	0.00147	0.04039	0.93485		
Seed transition matrix					
0.5	0.3	0.19			
0.25	0.5	0.24			
0.19	0.3	0.5			

NumLocations:			611		
NumTimePeriods:			46		
Num of iterations:			10		
Elapsed time in milliseconds			2580		
Initial state probabilities					
0.17656	0.68426	0.13919			
End state probabilities					
0.02436	0.02142	0.02044			
Emission probabilities					
statelout	1	2	3	4	5
Low	0.25516	0.01706	0.03098	0.48381	0.21299
Med	0.00568	0.71909	0.26892	0.00631	6.9E-10
High	0.24117	0.0137	0.02188	0.47264	0.25062
Transition probabilities					
FromlTo	Low	Med	High		
Low	0.35187	0.05386	0.56991		
Med	0.01494	0.9541	0.00955		
High	0.52316	0.03105	0.42535		
Seed transition matrix					
0.2	0.35	0.4			
0.2	0.55	0.2			
0.4	0.35	0.2			

NEXTOR

Video Integrator and Processor (VIP) Levels

VIP Level	Reflectivity (dBZ)	Precipitation Description
0	<18	
1	$[18,30)$	Light (Mist)
2	$[30,41)$	Moderate
3	$[41,46)$	Heavy
4	$[46,50)$	Very Heavy
5	$[50,57)$	Intense
6	>57	Extreme

Sonпе peferences

- Robust Dynamic Routing of Aircraft under Uncertainty, Arnab Nilim, Laurent El Ghaoui, Vu Duong
- A Hidden Markov Model for Space-Time Precipitation, Walter Zucchini, Peter Guttorp, Water Resources Research, Vol. 27, No. 8, 1991
A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena, James P. Hughes, Peter Guttorp, Water Resources Research, Vol. 30, No. 5, 1994
- A non-homogeneous hidden Markov model for precipitation occurrence, James P. Hughes, Peter Guttorp, Stephen P. Charles, Applied Statistics, 48, Part 1, pp.15-30, 1999
- A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models, Jeff A. Bilmes, International Computer Science Institute, 1998

