

Toward Probabilistic Forecasts of Convective Storm Activity for En Route Air Traffic Management

P. Barry Liu Prof. Mark Hansen University of California, Berkeley

September 25th, 2003

□ Weather is one of the primary factors in air traffic delay

(According to FAA, from Robust Dynamic Routing of Aircraft under Uncertainty, Nilim et al.)

Current practice of ATM: the predicted storm zones are avoided completely.

Unsatisfactory Forecast Performance + Complete Avoidance of the Predicted Storm Zones || Overly Conservative Routing Decisions + Much More Delays than the Unavoidable

- Dynamic routing strategies based on this concept were developed mostly under deterministic assumptions or in a simplified probabilistic setting
- But weather is stochastic in nature...
- ⇒ Investigate ways to provide probabilistic convective weather forecasts with higher accuracy in terms of convective activity probabilities for flight links to support realtime aircraft routing decision.

Introduction

- ❑ Goal: provide a better prediction of convective weather in explicit probabilities defined specifically in the aircraft routing context to aid aircraft routing decision-making
- Approach: develop a stochastic model depicting the evolution of the convective weather
- Modeling framework: take the evolution of convective weather as a Markov process ⇒ Future event can be predicted based on current information
 Markov Model
 - Hidden Markov Model

Markov Model

First order Markov chain

- finite states (i.e. weather states)
- future state S_{n+1}, is independent of the past states and depends only on the present state S_n
- Transition probabilities
 Pij

$$= P\{S_{n+1} = j \mid S_n = i, S_{n-1} = i_{n-1}, ..., \\ S_1 = i_1, S_0 = i_0\} \\ = P\{S_{n+1} = j \mid S_n = i\}$$

Seeing isn't believing

- What we observe does not necessarily have 1-1 mapping on the state that the system is in -- the state of the system is hidden
- Example: deduce the weather from a piece of seaweed

⇒ Hidden Markov Model!

Modeling Frameworks

Markov Model

Hidden Markov Model (HMM)

Model Definition - Markov Model

- First-order Markov Model is fully characterized by the transition probabilities
- Example: Three states--State 1, State 2, State 3

Transition	Matrix	То	
From	State 1	State 2	State 3
State 1	0.5	0.4	0.1
State 2	0.2	0.6	0.2
State 3	0.1	0.4	0.5

Model Development & Prediction -Markov Model

- Assume this is a discrete time Markov chain (transition occurs every t minutes)
- Model parameters: the transition probabilities
- Estimate the parameters directly from the data (the maximum likelihood estimator)

$$\hat{P}_{ij} = \frac{\# of \ transitions \ from \ state \ i \ to \ state \ j}{\# of \ visits \ to \ state \ i}$$

Prediction: Given the current states, the prediction for n periods later could be made by applying the transition probabilities n times

Model Definition - Hidden Markov Model

- □ A HMM is defined by
 - number of states
 - initial state probabilities
 - state transition matrix

- confusion matrix (emission probabilities)

	Confusion	Matrix				Transition	Matrix		
	p(1 *)	p(2 *)	p(3 *)	p(4 *)	p(5 *)	p(Low *)	p(Med *)	p(High *)	p(End *)
p(* Low)	0.319	0.261	0.227	0.128	0.065	0.555	0.386	0.051	0.008
p(* Med)	0.117	0.168	0.277	0.282	0.155	0.353	0.302	0.314	0.031
p(* High)	0.115	0.133	0.291	0.263	0.198	0.12	0.417	0.432	0.031
p(* Begin))					0.72014	0.15897	0.1209	

Model Development & Prediction -Hidden Markov Model

- □ Model parameters estimation (transition & confusion matrices)
 - Baum-Welch Algorithm
 - Posterior probabilities Forward & Backward algorithms
 - EM algorithm maximum likelihood with missing data
- Determine current hidden state
 - Viterbi Algorithm
 - Given the output state sequence and the model parameters
 - Determine the most probable state path
- Prediction
 - Current state + confusion matrix => probabilistic prediction of future weather

Problem Setup

- Given: An output sequence: $O_0, ..., O_n$
- Assume: the output sequence is generated by a HMM
- Objective function to maximize:
 - \square P(O₀, ..., O_n) -- the log-likelihood of having this output sequence
- □ Hypothetical parameters / decision variables:
 - Transition probabilities
 - Emission probabilities
 - Initial and end hidden state probabilities
- Techniques to estimate the model parameters:
 - Calculate forward and backward probabilities recursively based on hypothetical parameters
 - Estimate the parameters (based on multiple output sequences)
 - □ Iterate till the objective function value reaches convergence

Finding the most probable hidden state path (Viterbi algorithm)

Given:

- An output sequence
- HMM parameters: Transition and Confusion matrices

Data Source

- MIT Lincoln Lab Corridor
 Integrated Weather
 System (CIWS) products
- Coverage: The Northeast Corridor in the United States ~ 4 million 1 km x 1km cells, ~700k valid cells

Coverage of sensors integrated in the 2002 CIWS demonstration.

Data Source

- Convective weather states are labeled with Video Integrator and Processor (VIP) levels from 0 to 6
- □ VIP level \ge 3: not flyable
- Data include both actual and forecasts

200500	39.212509	75.008893	1
200500	39.212509	74.985601	1
200500	39.212509	74.962309	1
200500	39.212509	74.939018	1
200500	39.212509	74.915726	1
200500	39.212509	74.892435	1
200500	39.212509	74.869143	1
200500	39.212509	74.845852	1
200500	39.212509	74.822560	1
200500	39.212509	74.799269	1
200500	39.212509	74.775977	1
200500	39.212509	74.752685	1
200500	39.212509	74.729394	1
200500	39.212509	74.706102	1
200500	39.212509	74.682811	1
200500	39.212509	74.659519	1
200500	39.212509	74.636228	1
200500	39.212509	74.612936	1
200500	39.212509	74.589645	1
200500	39.212509	74.566353	1
200500	39.212509	74.543061	1

Unit Area for Evaluation - Flight Link

- Raw data: values for 1 km x 1km cells
- ❑ Assume en route flight speed ~ 500 mi
- Dimension of unit area
 - Length: distance traveled in 5 min. : ~60 km
 - □ Width: flight path width: ~ 12km
- □ Strip level = max{cell level₁, ..., cell level₆₀}
- □ Band level = min{strip level₁, ..., strip level₁₂}

A Case Study

Implementation

Data set: Aug 24, 2002, 46 time points, 5 minutes apart

- Coded in Java
- Steps:
 - Determine the storm level for the flight links
 - Define the hidden states and output states
 - □ HMM parameter estimation using Baum-Welch algorithm
 - Use Viterbi algorithm to find the most probable current state
 - Use transition and confusion matrices to predict storm levels at future time periods (12 periods -- 1 hour)

Implementation Decisions

- Number of hidden states: 3
- Number of output states: 5
- Seed matrices
- Stopping rule for algorithm iterations:
 - | difference of two consecutive LLs | < 0.1

VIP level	Output
0	1
1	2
2	3
3	4
4	4
5	5
6	5

	Confusion	Matrix				Transition	Matrix		
	p(1 *)	p(2 *)	p(3 *)	p(4 *)	p(5 *)	p(Low *)	p(Med *)	p(High *)	p(End *)
p(* Low)	0.3	0.3	0.2	0.1	0.1	0.5	0.4	0.05	0.05
p(* Med)	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.1
p(* High)	0.1	0.2	0.2	0.2	0.3	0.1	0.4	0.4	0.1
p(* Begin))					0.5	0.3	0.2	

Estimation Experience

- With different seed transition matrices
 - Matrices with difference within certain range yield similar estimated parameters
 - Matrices with significant difference yield drastically different result parameters
 - Known issue of HMM parameter estimation: converging to local maximum

Runtime statistics

# of locations	10	611	611
# of training periods	46	30	46
# of iterations	39	18	18
Log-Likelihood	-763.203	-16660.1	-23729.6
Estimation time (millisec)	330	3410	5060

Hardware: Pentium III processor, 128 MB RAM

Parameter estimation results

- Number of locations: 611
- □ Number of time periods: 20
- Number of iterations: 18
- Log-likelihood: -16660.136
- Elapsed time for parameter estimation: 3290 milliseconds
- □ Initial state probabilities: [0.586, 0.208, 0.205]

Transition	probabiliti	es		Emission probabilities					
from \ to	state 0	state 1	state 2	from \ emit	1	2	3	4	5
state 0	0.9365	0.0297	0.0008	state 0	0.1694	0.8108	0.0199	4.76E-18	1.03E-19
state 1	0.0731	0.8478	0.0498	state 1	1.04E-05	0.0488	0.8980	0.0533	5.34E-12
state 2	0.0021	0.0326	0.9278	state 2	3.78E-34	3.39E-08	0.0108	0.6237	0.3655

Sample Prediction Results

Time		Band 1	Band 2	Band 3	Band 4
t=-20	Actual State	2	1	4	2
t=-15	Actual State	3	1	5	1
t=-10	Actual State	4	2	5	2
t=-5	Actual State	3	2	5	1
t=0	Actual State	3	2	4	1
t=5	P(Observable State = 1)	0.04	0.23	0.03	0.31
	P(Observable State = 2)	0.12	0.33	0.09	0.28
	P(Observable State = 3)	0.42	0.21	0.24	0.19
	P(Observable State = 4)	0.25	0.17	0.38	0.15
	P(Observable State = 5)	0.17	0.06	0.26	0.07
	Actual State	3	2	4	1
t=10	P(Observable State = 1)	0.05	0.07	0.05	0.29
	P(Observable State = 2)	0.12	0.24	0.12	0.33
	P(Observable State = 3)	0.24	0.39	0.25	0.17
	P(Observable State = 4)	0.38	0.25	0.37	0.14
	P(Observable State = 5)	0.21	0.05	0.21	0.07
	Actual State	4	3	4	2

Model Forecast Results

Hidden Markov Model

15 min ahead	Probability of Prediction				
Actual Condition	Flyable	Not Flyable			
Flyable	90.85%	9.15%			
Not Flyable	25.28%	74.72%			

30 min ahead	Probability of Prediction				
Actual Condition	Flyable	Not Flyable			
Flyable	87.60%	12.40%			
Not Flyable	31.83%	68.17%			

45 min ahead	Probability of Prediction				
Actual Condition	Flyable	Not Flyable			
Flyable	84.25%	15.75%			
Not Flyable	40.75%	59.25%			

60 min ahead	Probability of Prediction				
Actual Condition	Flyable	Not Flyable			
Flyable	82.18%	17.82%			
Not Flyable	47.95%	52.05%			

Markov Model

15 min ahead	Probability of Prediction		
Actual Condition	Flyable	Not Flyable	
Flyable	90.08%	9.92%	
Not Flyable	29.27%	70.73%	

30 min ahead	Probability of Prediction		
Actual Condition	Flyable	Not Flyable	
Flyable	86.23%	13.77%	
Not Flyable	38.31%	61.70%	

45 min ahead	Probability of Prediction		
Actual Condition	Flyable	Not Flyable	
Flyable	82.42%	17.59%	
Not Flyable	48.52%	51.48%	

60 min ahead	Probability of Prediction		
Actual Condition	Flyable	Not Flyable	
Flyable	80.28%	19.73%	
Not Flyable	55.37%	44.63%	

Performance of HMM

Performance over time - Hidden Markov Model

Performance of Markov Model

Performance over time - Markov Model

Model Comparison (1)

Model Comparison: Actual Flyable, Predict Not Flyable

Model Comparison (2)

Model Comparison: Actual Not Flyable, Predict Flyable

Conclusions

- Need for properly defined probabilistic convective weather forecasts
- Potential for Markovian models to provide such forecasts
- The states are defined in the context of airline application
 -- link-based states vs. cell-based states
- HMM shows promise in modeling convective weather in terms of performance and computation
- Further investigation using NHMM as modeling framework
- Future work to incorporate the convective weather forecasts in aircraft routing decision-making

Questions?

Appendix

Parameter Estimation for HMM

Probability of observed data

Computing of the observed sequence involves summing over many possible hidden state sequences:

$$\mathsf{P}(\mathsf{O}_{0}, ..., \mathsf{O}_{n}) = \sum_{S_{0},...,S_{n}} P_{init}(S_{0}) P_{e}(O_{0} \mid S_{0}) ... P_{tr}(S_{n} \mid S_{n-1}) P_{e}(O_{n} \mid S_{n})$$

Forward probabilities
$$\alpha_t(i) = P(O_0, ..., O_t, S_t = i)$$
 $\alpha_0(1) = P_{init}(1)P_e(heads | 1)$
 $\alpha_0(2) = P_{init}(2)P_e(heads | 2)$
 $\alpha_1(1) = [\alpha_0(1)P_{tr}(1 | 1) + \alpha_0(2)P_{tr}(1 | 2)]P_e(tails | 1)$
 $\alpha_1(2) = [\alpha_0(1)P_{tr}(2 | 1) + \alpha_0(2)P_{tr}(2 | 2)]P_e(tails | 2)$
Generalized form:

$$\Box \ \alpha_0(i) = \mathsf{P}_{\mathsf{init}}(\mathsf{S}_0 = i)\mathsf{P}_{\mathsf{e}}(\mathsf{O}_0 \mid \mathsf{S}_0 = i)$$
$$\Box \ \alpha_t(i) = [\sum_i \alpha_{t-1}(j)\mathsf{P}_{\mathsf{tr}}(\mathsf{S}_t = i \mid \mathsf{S}_{t-1} = j)] \ \mathsf{P}_{\mathsf{e}}(\mathsf{O}_t \mid \mathsf{S}_t = i)$$

- **D** Backward probabilities $\beta_t(i) = P(O_{t+1}, ..., O_n | S_t = i)$
 - $\square \beta_2(1) = \mathsf{P}_{\mathsf{end}}(1)$
 - $\Box \beta_2(2) = \mathsf{P}_{\mathsf{end}}(2)$
 - $\square \beta_1(1) = P_{tr}(1 \mid 1)P_e(heads \mid 1) \beta_2(1) + P_{tr}(2 \mid 1)P_e(heads \mid 2) \beta_2(2)$
 - $\square \beta_1(2) = P_{tr}(1 \mid 2)P_e(heads \mid 1) \beta_2(1) + P_{tr}(2 \mid 2)P_e(heads \mid 2) \beta_2(2)$
- Generalized form:

$$\begin{array}{l} \square \quad \beta_n(i) = \mathsf{P}_{end}(i) \\ \square \quad \beta_{t-1}(i) = \sum_{j} \mathsf{P}_{tr}(\mathsf{S}_t = j \mid \mathsf{S}_{t-1} = i) \mathsf{P}_e(\mathsf{O}_t \mid \mathsf{S}_t = j) \ \beta_t(j) \end{array}$$

Current estimate about $S_t : \alpha_t(i) = P(O_0, ..., O_t, S_t = i)$ Future evidence about $S_t : \beta_t(i) = P(O_{t+1}, ..., O_n | S_t = i)$

The probability of generating the observations and going through state i at time t is:

 $P(O_0, ..., O_n, S_t = i) = \alpha_t(i) \beta_t(i)$

- **D** $P(O_0, ..., O_n) = \sum_i \alpha_t(j) \beta_t(j)$ for t = 0, 1, ..., n
- The posterior probability that the HMM was in a particular state i at time t is:

 $P(S_t = i \mid O_0, ..., O_n) = [\alpha_t(i) \beta_t(i)] / [\sum_j \alpha_t(j) \beta_t(j)] = x_t(i)$

Forward-backward probabilities

Current estimate about S_t : $\alpha_t(i) = P(O_0, ..., O_t, S_t = i)$ Future evidence about S_{t+1} : $\beta_{t+1}(j) = P(O_{t+2}, ..., O_n | S_{t+1} = j)$

The posterior probability that the HMM was in a particular state i at time t and transitioned to state j at time t+1 is: $P(S_t = i, S_{t+1} = j | O_0, ..., O_n)$ $= [\alpha_t(i) P_{tr}(S_{t+1} = j | S_t = i)P_e(O_{t+1} | S_{t+1} = j) \beta_{t+1}(j)] / [\sum_{j} \alpha_t(j) \beta_t(j)]$ $= y_t(i, j)$

EM algorithm for HMMs

- Assume there are M observation sequences: $O_0^{(m)}, \dots O_{nm}^{(m)}$
- E-step: compute the posterior probabilities:
 x_t^(m) (i) for all m, i, and t (t = 0, ..., n_m)
 y_t^(m) (i, j) for all m, i, j, and t (t = 0, ..., n_{m-1})
- M-step:
 - □ Initial state probabilities
 - □ Transition probabilities
 - Emission probabilities

M-step: initial state probabilities

Initial state probabilities

= expected fraction of times the sequences started from a specific state i

$$\hat{P}_{init}(i) = \frac{1}{M} \sum_{m=1}^{M} X_0^{(m)}(i)$$

M-step: transition probabilities

□ Transition probabilities:

$$\hat{P}_{tr}(j \mid i) = \frac{\# of \ transitions \ from \ i \ to \ j}{\# of \ visits \ to \ i} = \frac{\hat{N}(i, j)}{\sum_{j} \hat{N}(i, j)}$$

where the expected number of transitions from i to j :

$$\hat{N}(i,j) = \sum_{m=1}^{M} \sum_{t=0}^{n-1} y_t^{(m)}(i,j)$$

M-step: emission probabilities

$$\square \text{ The emission probabilities:} \\ \hat{P}_e(k \mid i) = \frac{\# of \text{ outputs } k \text{ while in state } i}{\# of \text{ visits to } i} = \frac{\hat{N}_0(i,k)}{\sum_k \hat{N}_0(i,k)}$$

where the expected number of times a particular observation k was generated from a specific state i:

$$\hat{N}_{0}(i,k) = \sum_{m=1}^{M} \sum_{t=0}^{n_{m}} x_{t}^{(m)}(i)\delta\left(O_{t}^{(m)},k\right)$$
where $\delta\left(O_{t}^{(m)},k\right) = 1$ if $O_{t}^{(m)} = k$

$$= 0$$
 otherwise

Different seed transition matrices

NumLoca	ations:		611		
NumTime	ePeriods:		46		
Num of it	erations:		10		
Elapsed	time in mi	lliseconds	2580		
Initial state	e probabili	ties			
0.55654	0.23009	0.21337			
End state	probabiliti	es			
0.02222	0.01828	0.0234			
Emissior	n probabil	ities			
state\out	1	2	3	4	
Low	0.16612	0.82345	0.01043	4.28E-11	1.61E-1
Med	2.45E-06	0.09386	0.87669	0.02945	3.48E-0
High	6.55E-17	9.73E-07	0.01533	0.66011	0.3245
Transitio	n probabi	lities			
From\To	Low	Med	High		
Low	0.94807	0.02931	4.01E-04		
Med	0.08224	0.84123	0.05825		
High	4.68E-04	0.04093	0.9352		
Seed transi	tion matrix				
0.4	0.35	0.2			
0.2	0.55	0.2			
0.2	0.35	04			

NumLoca	ations:		611		
NumTimePeriods:		46			
Num of it	erations:		10		
Elapsed	time in mi	lliseconds	2530		
Initial state	e probabili	ties			
0.57251	0.21542	0.21208			
End state	probabiliti	es			
0.02227	0.01814	0.0233			
Emissior	n probabil	ities			
state\out	1	2	3	4	5
Low	0.16366	0.82105	0.01528	5.50E-11	4.65E-14
Med	1.00E-05	0.06882	0.89743	0.03374	9.10E-09
High	9.18E-18	2.02E-06	0.01307	0.66082	0.32611
Transitio	n probabi	lities			
From\To	Low	Med	High		
Low	0.95002	0.02681	8.93E-04		
Med	0.07868	0.84403	0.05915		
High	0.00147	0.04039	0.93485		
Seed transi	tion matrix				
0.5	0.3	0.19			
0.25	0.5	0.24			
0.19	0.3	0.5			

NumLoca	ations:		611		
NumTime	ePeriods:		46		
Num of it	erations:		10		
Elapsed	time in mi	lliseconds	2580		
Initial state	e probabili	ties			
0.17656	0.68426	0.13919			
End state	probabiliti	es			
0.02436	0.02142	0.02044			
Emission	n probabil	ities			
state\out	1	2	3	4	5
Low	0.25516	0.01706	0.03098	0.48381	0.21299
Med	0.00568	0.71909	0.26892	0.00631	6.9E-10
High	0.24117	0.0137	0.02188	0.47264	0.25062
Transitio	n probabi	lities			
From\To	Low	Med	High		
Low	0.35187	0.05386	0.56991		
Med	0.01494	0.9541	0.00955		
High	0.52316	0.03105	0.42535		
G 14					
Seeu transi	uon matrix				
0.2	0.35	0.4			
0.2	0.55	0.2			
0.4	0.35	0.2			

Video Integrator and Processor (VIP) Levels

VIP Level	Reflectivity (dBZ)	Precipitation Description
0	< 18	
1	[18, 30)	Light (Mist)
2	[30, 41)	Moderate
3	[41, 46)	Heavy
4	[46, 50)	Very Heavy
5	[50, 57)	Intense
6	> 57	Extreme

Some References

- Robust Dynamic Routing of Aircraft under Uncertainty, Arnab Nilim, Laurent El Ghaoui, Vu Duong
- A Hidden Markov Model for Space-Time Precipitation, Walter Zucchini, Peter Guttorp, Water Resources Research, Vol. 27, No. 8, 1991
- A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena, James P. Hughes, Peter Guttorp, Water Resources Research, Vol. 30, No. 5, 1994
- A non-homogeneous hidden Markov model for precipitation occurrence, James P. Hughes, Peter Guttorp, Stephen P. Charles, Applied Statistics, 48, Part 1, pp.15-30, 1999
- A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models, Jeff A. Bilmes, International Computer Science Institute, 1998