

The Value of Perfect Information at SFO

Tasha R. Inniss, Michael O. Ball, Robert Hoffman In cooperation with Wes Wilson

NEXTOR/CDM Research Review University of Maryland September 25, 2003

Marine Stratus Conditions

- Low cloud ceilings (uniform)
- Occurs at SFO during months of May through October
- Stratus forms over San Francisco Bay during the night and dissipates during morning hours
- Conditions do not allow dual approaches into SFO

Current GDP Planning at SFO

- Around 1300z, specialists plan GDP if demand exceeds capacity (after morning phone call)
- TRACON decides if dual (side-by-side) approaches can be done
- When weather appears to clear, ground controller asks pilot if he/she is willing to accept a visual approach

(this time is known as the "sideby time")

Comparison of GDPs

- <u>Best Execution of the Best Program (BEBP):</u> Executing a GDP that uses the Sideby Time as the "best" end time
- <u>Best Execution of the Actual Program (BEAP):</u> Executing the original planned GDP with the inclusion of the actual cancellation time (CNXtime)
- <u>Actual Execution of the Actual Program (AEAP)</u>: Executing the original planned GDP with the inclusion of all dynamic changes such as flight cancellations

BEBP, BEAP, AEAP Delays

- **Delay_BEBP** Delay that results from knowing the exact time of burnoff of marine stratus conditions (sideby time)
- **Delay_BEAP** Delay that results from canceling a planned, "best-executed" GDP (including delay of those flights subsequently canceled)
- **Delay_AEAP** Delay that actually occurs in a planned GDP

Value of Perfect Information (VPI)

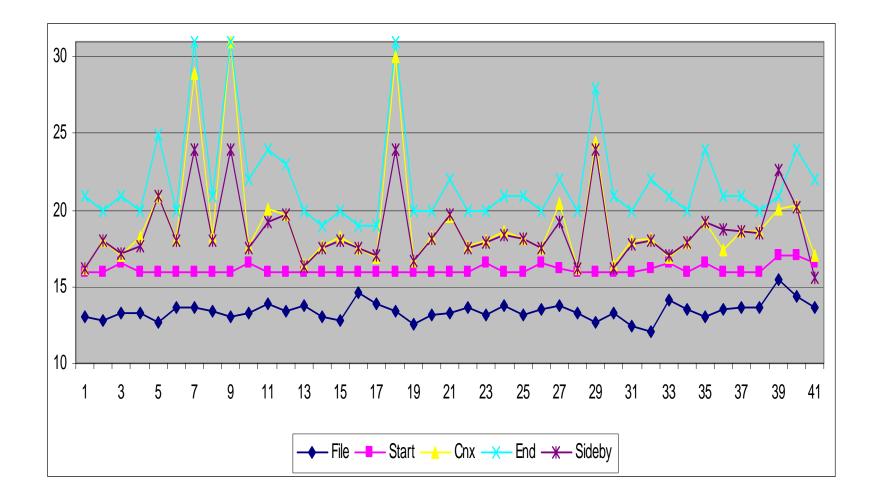
VPI ("Preventable" Delay) = Delay_BEAP- Delay_BEBP

Delay_BEAP and Delay_BEBP sums delay for all flights such that

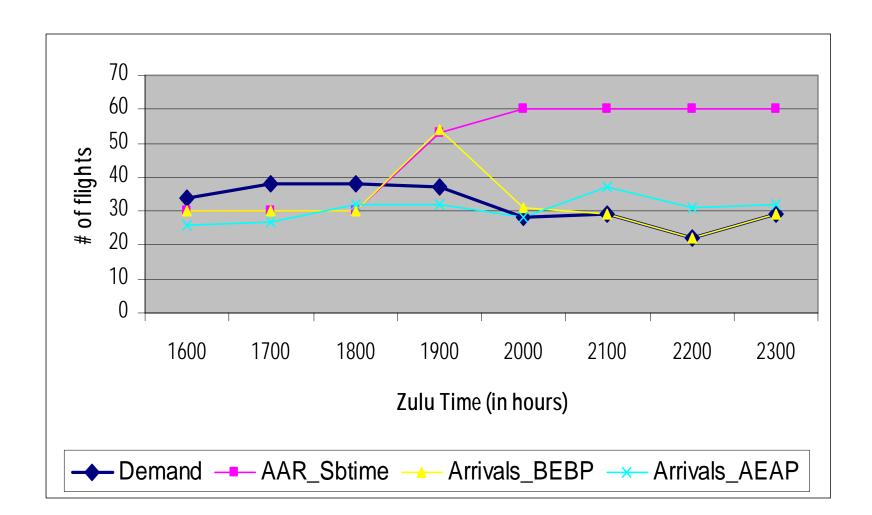
$GDP_Start < BETA_f < GDP_End$

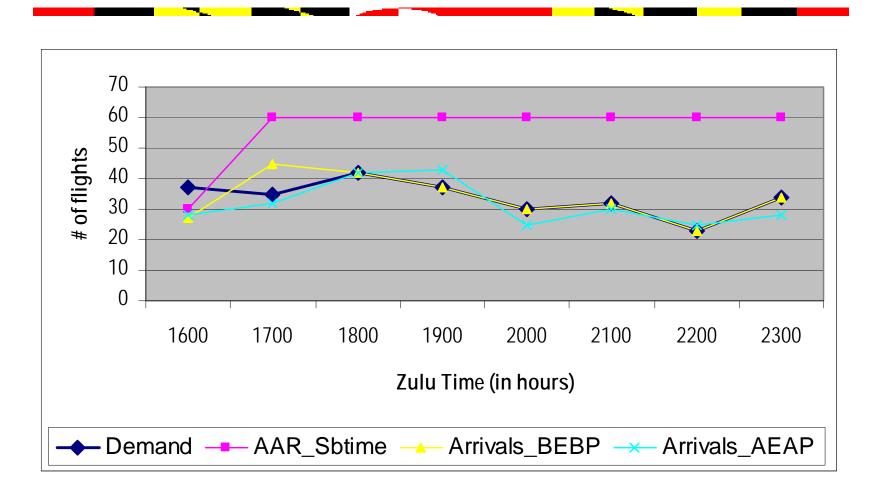
 $Delay_BEAP = Sum_{f} (Earliest Arrival Time - BETA)$ $Delay_BEBP = Sum_{f} (CTA_SB - BETA)$

Where: Earliest Arrival Time = Max (BETA, CNXtime + ETE) CTA_SB = "mock" CTAs given to flights based on 30 rate and 60 rate at Sideby time


Sample GDPs at SFO in 2001

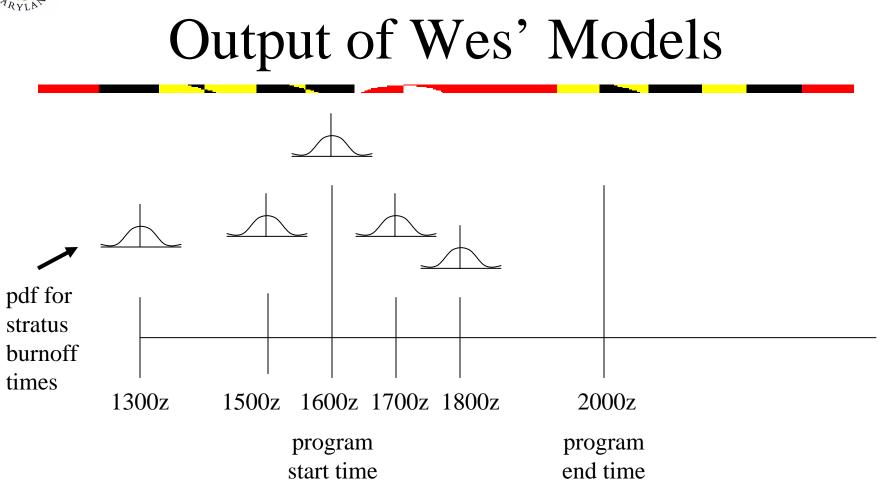
	GDP_Start	GDP_End	CNXtime	Sideby Time
6/28/2001	1600	2059	1614	1610
7/19/2001	1630	2159	1736	1728
7/20/2001	1600	2359	2003	1913
7/21/2001	1600	2259	1940	1943
7/22/2001	1600	1959	1625	1622
7/27/2001	1600	1859	1733	1734
7/28/2001	1600	1859	1655	1700
8/2/2001	1600	1959	1640	1643


GDPs at SFO in 2001


7/20/01

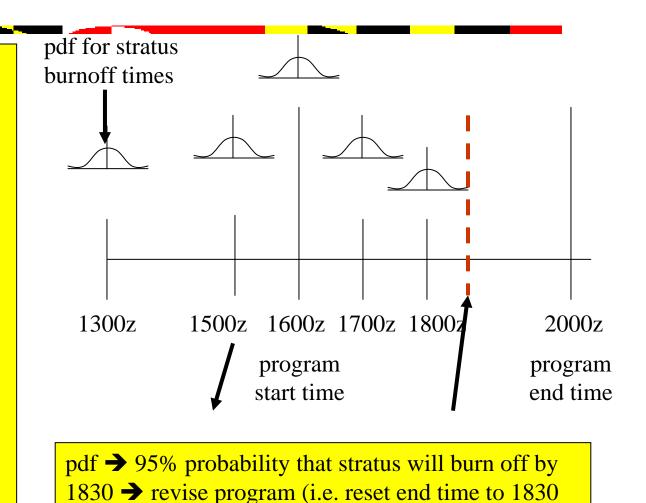
Cumulative Delay at SFO

	Delay_BEBP	Delay_BEAP	VPI	Delay_AEAP	Add. CNXs
6/28/2001	160	6086	5926	3141	5
7/19/2001	738	5421	4683	4519	6
7/20/2001	1990	10328	8338	9977	11
7/21/2001	4066	12056	7990	8985	11
7/22/2001	165	4083	3918	946	5
7/27/2001	1098	5273	4175	1833	1
7/28/2001	607	5323	4716	1669	3
8/2/2001	268	3610	3342	2471	5


Average Delay Savings Per GDP

Days at SFO in 2001 with "typical" marine stratus conditions:

Total Sum of VPI = 244741 Total Number of GDPs = 41 **Average Delay Savings Per GDP = 5969.29**



SAMPLE SCENARIO

- previously developed models employ risk management, i.e. tradeoff "costs" for large amounts of airborne delay on some days for less delay (and higher throughput on others);
- decision makers at SFO are very conservative (little room for airborne queues) so the risk mgmt approach may not be acceptable.
- Proposed approach: use pdf to determine when program end time can be revised with very high probability

