Evaluation of Collaborative Rationing of En Route Resources

Josh Marron, Antonio Abad Bill Hall, Francis Carr, Steve Kolitz 25 Sept 2003

Outline

- The need for collaborative en route rationing
- Proposed routing schemes
- Evaluation methodology
 - Model for forecast/planning/execution
 - Metrics for comparison
- Scenarios
 - Mapping weather forecast to capacity forecast
 - Scenario selection
- Preliminary results
- Pending and future work

Background: Collaborative En-Route Rationing

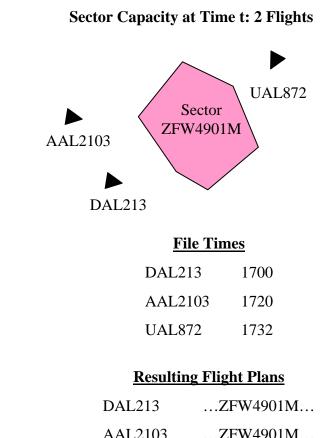
- Collaborative
 - Operational decisions concerning the Air Transportation System are made by many stakeholders
 - Numerous Airlines
 - Air Traffic Management and Air Traffic Control
 - General Aviation
 - Airport Authorities
- Rationing
 - At times demand exceeds capacity
 - Rationing ensures safe operation
- En-Route
 - Has had relatively little attention
 - Large potential improvement

Background: Definitions

- Capacity: The rate at which aircraft can be processed through airspace (given very high demand)
 - Numerous operational constraints determine capacity
 - Under normal conditions, controller workload and frequency congestion limit capacity
 - Occasionally, bad weather shuts down parts of airspace
- Resource: A high level En Route sector s at time t with capacity c

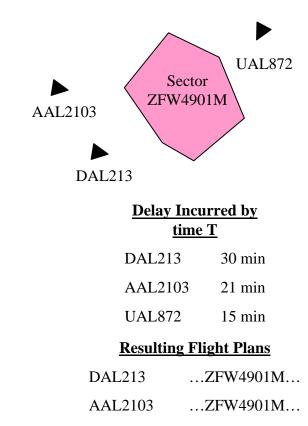
Sector Capacity at Time t: 2 Flights

Proposed routing schemes


- First-Filed, First-Served
- Equalize Accrued Delay
- Randomized Rerouting
- Global Optimization

First-Filed, First-Served

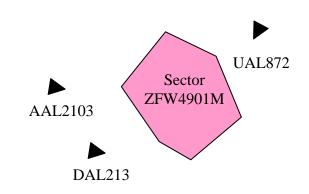
- Priority for en route resources assigned when the flight plan is first filed
- Advantage:
 - Encourages (earlier) proactive planning of airspace usage.
- Disadvantages:
 - Unexpected spillover from other Flight Control Areas.
 - Lack of built-in *alternative* plans.
 - Potential for "gaming".


111111111111	
UAL872	ZFW4901M.

Equalize Accrued Delay

- Allocate resources to uniformly distribute delay
 - Analogous to RBS-based slot assignment in GDP-E.
- Advantage:
 - No user is unduly delayed.
- Disadvantage:
 - Disregards nature of delay. Can be mechanical, crewrelated, etc.

Sector Capacity at Time t: 2 Flights


UAL872ZFW4901M...

Randomized Rerouting

- For each over-scheduled resource, re-route (randomly) selected subset of flights.
- Advantage:
 - "Pure" equitable allocation.
- Disadvantage:
 - Maximum capacities are respected, but sector loads remain unbalanced (favors most popular routes).
 - No *global* optimality guarantees.

Resulting Flight Plans	
DAL213	ZFW4901M.
AAL2103	ZFW4901M
UAL872	ZFW4901M

Sector Capacity at Time t: 2 Flights

Global (ATC-side) Optimization

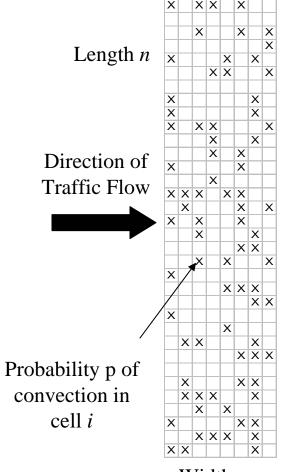
- Resources allocated by a central (FAA) authority via extended Bertsimas/Stock MIP formulation.
- Advantage:
 - Global optimality guarantee.
- Disadvantage:
 - Imperfect knowledge of stakeholder objectives and NAS state degrades user optimality.

Evaluation Method: Central Questions

- Identify performance trade-off between planning horizon and forecast accuracy
 - Short horizon rerouting benefits from more reliable forecasting
 - Long horizon rerouting benefits from a greater number of system degrees of freedom
- Examine dynamic stability/flexibility of plans
 - How much of the current situation and previous planning should be deemed "frozen?"
- Quantify the benefit of increased user collaboration
 - Multiple Flight Plan Submission
 - Voluntary Rerouting

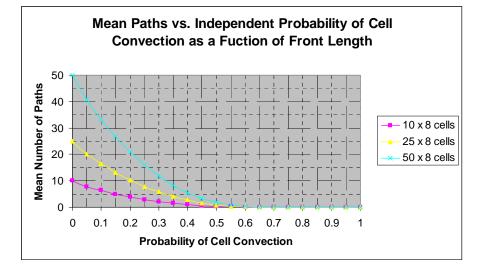
Evaluation Methodology: Planning/Information Model

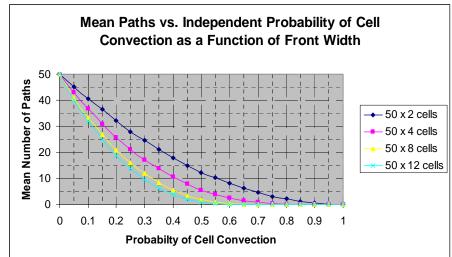
Evaluation Methodology: Metrics


- Total Benefit (Cumulative Delay Reduction)
- Delay Distribution
 - Overall
 - User-Specific (e.g. distribution for each airline)
- Sector Density
 - Safety Metric
 - Compare resulting number of "hot spots" with what actually occurred and Monitor Alert
- Per flight costs
 - Account for missed connections using DB1 database of connecting flight information

Scenarios: *Wx* Forecast \Rightarrow *Capacity* Forecast

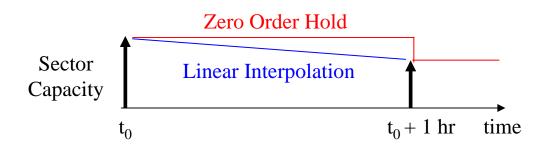
- Model RTVS of CCFP.
- Given an *n x m* grid of cells (10nm squares), each with probability *p* of convection, how many available paths?
- Percolation theory
 + max-flow optim.


Width *m*



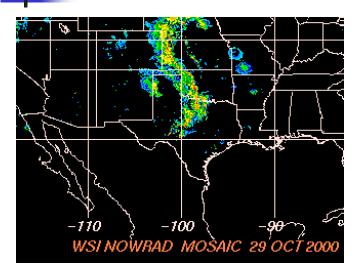
Capacity Forecasts

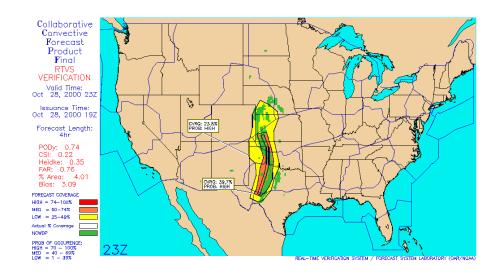
 Uniform increase in mean paths as front length increases


 Uniform decrease in mean paths as front width increases

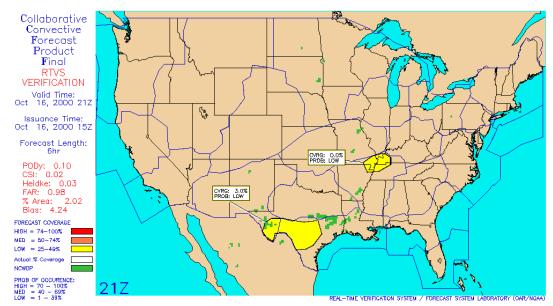
Capacity Forecasts

- CCFPs are issued every 4 hours
 - 2, 4, & 6 hour lead time forecasts
- In real-time, weather is dynamic, continuous and observable
- Must approximate this real-time ability via interpolation using hourly NEXRAD images
 - Zero Order Hold or Linear Interpolation


Test Scenarios

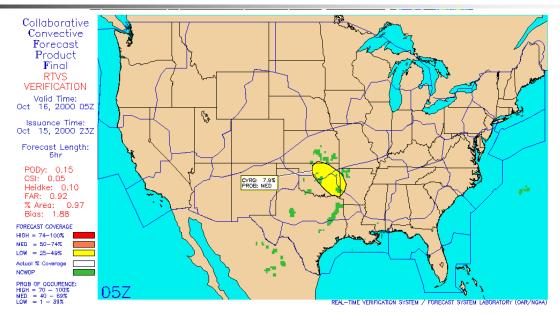

- Scenario description
 - Strongly Convective Fronts (October 28, 2000)
 - Inaccurate Forecast (October 16, 2000)
 - Rapidly Developing Convection (October 15, 2000)
 - Weak and Dispersed Fronts (October 21, 2000)

Scenario 1: Strong Convective Front



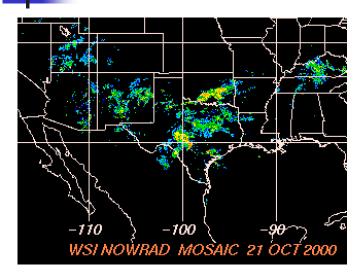
- Strong front sweeps N. Texas and Oklahoma.
- Benchmark: Best-accuracy forecast... Best-case performance?

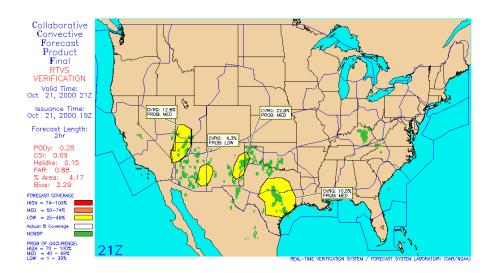
Scenario 2: Inaccurate Forecast



- Very little activity in the forecast area
- Benchmark: Robustness and performance degradation under inaccurate forecast

Scenario 3: Rapidly-Developing Convective Activity

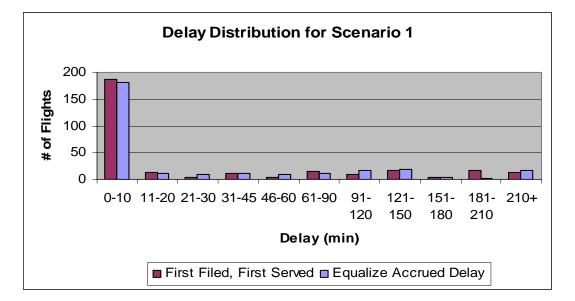



- Quick-developing storm activity through N. TX, OK.
 - Radar Loop: 10/15/00, 1300Z 0200Z (8 AM 9 PM CST)
- Benchmark: Flexibility/adaptability of routing solutions; dependence on forecast horizon.

Scenario 4: Weak Storm Activity

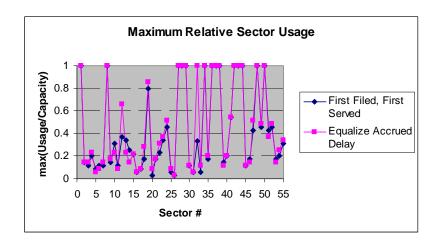
- Weak "popcorn" storms over NM, TX, OK.
- Benchmark: Sensitivity to noise (weather is lowimpact but unpredictable)

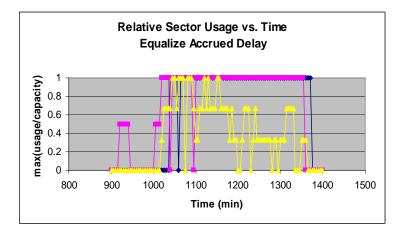
Preliminary Results Qualitative

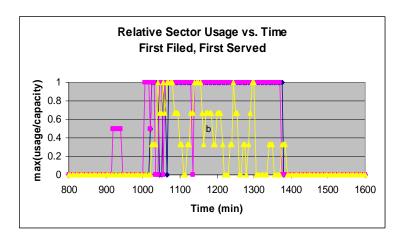

- Flights departing from FCA unduly held
 - Not as many DOFs as over-flight traffic
 - Segregate traffic into different classes
- Need to provide adequate "buffer" of nominally-constrained sectors around FCA
 - Inability to route around FCAs results in an extreme amount of incurred delay

Preliminary Results Quantitative

Scenario 1


Rationing Scheme	Cumulative Delay
-	sec.
First-Filed, First Served	11830
Equalize Accrued Delay	12140
Global Optimization	5450





Preliminary Results Quantitative

Scenario 1

Pending and Future Work

- Analyze remaining scenarios.
- Baseline sector capacities: observed (ETMS) and planned (MAP).
- Per-user costs (database-join against DB-1)
 - Passenger holding delay and delayed connections.
- Examine planning-horizon effects. Fully implement MP-RHC simulation (possible FACET integration).

Pending and Future Work

 Methods for increasing collaboration: Multiple (Filed/Preferred) Routings.

- Investigate user-acceptance issues:
 - "Fairness" via Completely Biased heuristic.
 - Site-visits to ZBW.
 - Dynamic stability of plans.
- Incorporate state-of-the-art Nowcasting ability
 - Growth & Decay Storm Tracker
 - Advection Interpolation and Extrapolation