Big Iron

Almira Williams and Stephane Mondoloni CSSI, Inc. Washington D.C.

Diana Liang, Steve Bradford, and Richard Jehlen FAA Washington D.C.

Outline

- The Big Iron Concept
- Future Airspace Operations
- Big Iron Pro's and Con's
- Description of Research
 - Simulation Model
 - Financial Model
- Summary

The Big Iron Concept

- Ground based decision support for:
 - Aircraft Operators (indirectly for unequipped)
 - Air Traffic Service Providers
 - Airline Operation Centers
- Centralized information assembly and processing
 - Surveillance
 - Weather
 - NAS Status
 - Other Advisories

Future Airspace Operations

- Shift authority for separation and trajectory alterations to appropriately equipped aircraft and their crews
 - Free Flight
 - Distributed Air-Ground Traffic Management (DAG-TM)
 - Delegated Responsibilities
- Key Players: ATSP, Equipped aircraft, Non-equipped aircraft, and AOCs
- Automated and on-demand decision support
- Common information

Future Airspace Operations: Information Flow & DS

Big Iron: Pro's and Con's

- Expected advantages:
 - Homogeneous aeronautical information
 - Versatility and access to new applications and resources
 - Enhanced predictability of trajectories of other users
 - Potential cost-effectiveness
- Expected disadvantages:
 - Additional strain on communication links
 - System-preferred as opposed to the user-preferred trajectory re-planning solution

Big Iron Research

- Air/Ground Communications Simulation Model
 - Discrete event
 - Controller/Pilot and DS message flow
 - Data link
- Financial Model
 - Compares costs of equipping fleet with on-board (distributed) vs. centralized decision support
 - Aircraft, Airline and NAS-level analysis

Air/Ground Communications Simulation Model

- Morning rush operations forecasted for 2015
- Three centers: ZID, ZAU, and ZOB
- Fleet equipage levels (%): 20, 40, 60, 80, & 100
- Decision support message sizes (Kb): 0 (DS messages not implemented), 25, 50, 75, 100, & 125
- Probability of DS message request upon sector entry: 25%
- CPDL and DSDL via VDL Mode 3
- Other supporting services fully operational (TIS, FIS, etc.)

VDL Mode 3

- Supports time critical A/G data link applications and digital voice
- Time Division Multiple Access (TDMA) technology
- Four virtual channels per single 25 KHz frequency assignment
- Effective data rate 19.2 kbps per channel
- Simultaneous transmission of voice and data to/from multiple aircraft

ZOB: CPDL Messages

■ Avg. ETET ■ Max ETET ■ Avg. Max ETET

ZAU: DST Messages

Avg. ETET Max ETET A

Avg. Max ETET

Equippage Rate

ZID: DST Messages

Avg. ETET Max ETET Avg. Max ETET

Large DS Messages: Max End-to-End Time

Potential Cost Effectiveness

- Installation, maintenance, certification and upgrade
- Many airborne vs. few ground based DST
- Major airline investments vs. FAA investments
- Introduction of new applications/resources

Financial Model

- Determine the number of years that would be necessary for benefits to outweigh the investment
- Aircraft retro-fitting vs. forward-fitting costs (typical)
- Cost data based on historical data from recent FAA and airline investments (host replacement, ERAM, FMS, TCAS, etc.)
- Typical, best and worst case

Financial Model Results: Payoff Period

	Best Case	Typical Case	Worst Case
Single Aircraft	1 vs. 1	1 vs. 4	2 vs. >30
NAS-wide	2 vs. 3	4 vs. 7	7 vs. >30

* Ground based centralized DST vs. on-board decentralized DST (year)

Summary

- Big Iron assures uniformity of aeronautical information
- Increased A/G message traffic can be accommodated and would not decrease the quality of air/ground communications
- Airlines would likely recover their required investment within the first year of operations

Contact Info

Almira Williams <u>awilliams@cssiinc.com</u>

CSSI, Inc. http://www.cssiinc.com

NEXTOR/FAA Conference