Estimating Sources of Temporal Deviations from Flight Plans

Ms. Natasha Yakovchuk (yakovn2@rpi.edu) Prof. Thomas R. Willemain (willet@rpi.edu)

Department of Decision Sciences and Engineering Systems Rensselaer Polytechnic Institute

Sponsored by Free Flight Program, Federal Aviation Administration Contract # DTFA01-98-00072

Agenda

- FAA interests: system predictability, assessing interventions
- Problem introduction
- Proposed methodology
- Evaluation of alternative estimation methods
- System implementation in SAS for annual and next-day reporting
- Ongoing research
 - Operational validation
 - Statistical analysis of results

Motivation and FAA sponsorship

- Client: Free Flight Program of the Federal Aviation Administration
- Need: improve system predictability and decrease unexpected flight delays
- More specifically: trace flight delays to their sources, and quantify them
- Intended use: next-day and annual reporting, special studies
- **Potential use:** evaluating impact of FAA initiatives

Problem introduction

- Average airtime fluctuates (due to winds aloft, weather and congestion in airports, etc.)
- Flight plans anticipate "normal problems"

✤ Shift attention to

Deviation = Actual Airtime – Flight Planned Time

2 types of Deviations: "ETE" and "G2G"

Problem introduction: Deviations

- Deviations from flight plans measure unanticipated problems, or "surprises"
- ← Common factors for different flights are considered as systemic sources of deviations

Decompose deviations into four sources:

System + Origin airspace + Destination airspace + En route airspace

FAA data as a two-way table

Destination airport

- 31 major US airports
- Each table represents one day of operations
- Each cell contains an average deviation from flight plan
- One observation per cell, averaging over multiple flights
- Data available for January '01-March '03
- Presence of structural 'holes'

Fragment of the table

Destination airport

	ATL	BOS	BWI	CLE	CLT	CVG	DCA	DEN	DFW	DTW	EWR	IAD	IAH
ATL		6.33	3.93	-0.80	6.33	2.36	6.80	-3.47	0.93	2.50	-1.74	0.22	-4.00
BOS	4.50		3.30	0.20	5.43	-2.71	4.67	2.43	2.00	-1.25	-7.71	7.88	-2.17
BWI	4.71	0.45		7.55	0.13	8.40		-0.17	1.00	15.17	-5.29	4.20	-1.2
CLE	1.27	7.80	7.40	, i	0.83	-1.08	2.75	0.00	4.80	0.08	-12.8	8.50	1.
CLT	3.31	-2.00	1.43	5.00		4.25	7.33	1.67	3.00	8.00	0.36	18.80	-3.
CVG	5.40	2.67	-1.25	-2.45	-4.88		7.40	7.40	0.00	5.78	-11.1	11.38	-8
DCA	6.53	-0.84		2.00	-0.73	3.75		-4.00	1.54	8.29	-16.5		
DEN	4.25	7.86	7.00	-6.25	3.25	1.50			2.80	3.50	3.31		
DFW	5.03	-7.92	9.17	-2.33	1.85	4.22	5.18	-0.37		3.92			
DTW	5.06	4.75	-2.50	2.71	-0.33	1.57	-1.14	0.13	4.67				
EWR	-2.46	-9.48	4.83	-1.57	0.40	-1.80	-3						
IAD	3.06	-0.09		-0.33	-5.00	1 1							
IAH	5.00	-10.0	=1 17										

Origin airport

Row + Column Analysis

system effect

 μ = system effect (e.g., September 11th)

- α_i = origin effect (e.g., restricted departure gates)
- β_i = destination effect (e.g., fog)
- ϵ_{ii} = en route effect (e.g., convective weather, MIT, circular holding)

Which estimation method to use?

Methods:

- Ordinary Least Squares
- Least Absolute Deviations (LAD)
- Median Polish

Full factorial design:

- Factors (at 3 levels each):
 - table size
 - percentage of holes
 - percentage of outliers
- Responses (comparison criteria):
 - accuracy of estimates (RMSE and MAE for effects)
 - outlier detection capability (sensitivity and specificity)

Modeling FAA data

- Can use estimates from LAD
- Generate origin, destination and en route effects independently
- Most effects can be modeled by N(μ, σ²) after removing outliers

- μ and σ of effects can be modeled independently
- µ is modeled by Normal
- σ is modeled by Lognormal

Major findings

- All error measures are on the order of only <u>one minute</u> for all three methods !
- Since FAA data have up to 10% outliers, we choose resistant methods (better in accuracy and outlier detection capability)
- LAD is slightly better in estimating terminal effects than median polish
- Choose LAD for estimation

System implementation for the FAA

A turnkey system implemented in SAS that produces:

- Next-day estimates of effects
- Map-based displays
- Statistical graphics
- Datasets for use in one-off statistical studies

Timeplot of system effects, 2001

Boxplots of destination effects, 2001

Subgroup Sizes: Win u=345 - Nue u=365

Map of destination effects

Map of en route effect outliers

Ongoing research #1: Operational validation

- Validate the results against other databases:
 - Aviation System Performance Metrics (ASPM)
 - Operations Network (OPSNET)
 - Post Operations Evaluation Tool (POET)
 - Strategic Plans of Operation (SPO)
 - National Oceanic and Atmospheric Administration (NOAA)
- Conduct at two levels:
 - Macroscopic validation (compare statistics for a certain time period)
 - Microscopic validation (detailed validation for selected days)

Macroscopic validation: ASPM

 Strong correlation between destination effects (calculated from G2G data) and ASPM percentage of late arrivals (Jan'2001-March'2003)

Microscopic validation: Weather

7 min

10 min

•

outlie

Ongoing research #2: Statistical analysis of effects

Objective: Use the estimated effects to study the NAS

 Origin versus destination effects for LAX (G2G): negative correlation

Statistical analysis of effects

Acknowledgements

- FAA/Free Flight Program
 - Mr. Dave Knorr
 - Mr. Ed Meyer
- CNA Corporation
 - Mr.Joe Post
 - Mr.James Bonn
- Metron Aviation
 - Dr. Bob Hoffman