

"An Airspace Planning and Collaborative Decision Making Model (APCDM) Under Safety, Workload, and Equity Considerations"

Hanif D. Sherali Raymond W. Staats Antonio A. Trani

NEXTOR Research Seminar - Falls Church, VA June 3, 2003

- Motivation & Background
- APCDM
 - Conflict Resolution
 - Sector Workloads
 - Collaborative Decision Making (CDM) Considerations
 - Overall Model Formulation
- Model Analyses
 - Probabilistic Aircraft Encounter Model (PAEM) Analysis
 - Parameterization & Sensitivity Analysis
 - Conflict Constraint Formulation Analysis
- Research Directions

Motivation & Background

- Delays: Space Launch, Weather Systems
- Congested Airspace: Safety and ATC Workload
 - Distribute sector workloads
 - Minimize en-route aircraft conflicts
- Airline Competition
 - Fair allocation of constrained resources
 - New entrants and small/medium community service
 - Disparity in distribution of costs
 - Consumer expectations

- Flight Plan Selection ${}^{\bullet}$
 - For each flight, select one flight plan from among alternatives
 - Minimize Flight Costs (Objective Function) ۲
 - Subject to Considerations (Penalty Terms in Objective ۲ Function):
 - Sector Workload
 - Safety (Conflict Resolution)
 - **Decision Equity**

- Sector Occupancies
- Aircraft Conflict Analysis
 - Stochastic with respect to aircraft trajectory
 - Conflict risk thresholds
- Conflict & Workload Constraint Generation
 - Continuous time formulation
 - Two new classes of valid inequalities
 - Sector workloads--average and peak workloads
- CDM Equity Representation
 - Cost Model
 - Collaboration Efficiency & Equity
- Mixed-Integer Programming Model

AIRSPACE OCCUPANCY MODEL

- Mathematical NAS representation
- 20 centers each divided into sectors

- Flight plans processed to determine sector occupancy time intervals
- Occupancy data used:
 - To characterize sector occupancy workloads
 - As pre-processing data for PAEM conflict analysis

- Workload Characterization
 - Average Occupancy throughout some horizon (w_s)
 - Peak Occupancy (n_s)
- **Occupancy Constraints:**
 - Prohibit selection of combinations of flight plans that cause sector capacity (\overline{n}_{s}) to be exceeded
- Penalty Functions:
 - Average Workload: $\sum_{s=1}^{s} g_s w_s$
 - Constant penalty $\overline{s=1}$ Peak/Average Differential: $\sum_{s=1}^{S} \sum_{n=0}^{\overline{n}_s} \mathbf{m}_{sn} y_{sn}$
 - Piecewise linear representation of increasing quadratic function

PROBABILISTIC AIRCRAFT ENCOUNTER MODEL

Conflict Analysis

• Proximity Shell Around Each Focal Aircraft

- Moves with aircraft as it traverses its flight trajectory
- Conflict occurs when another intruder aircraft pierces the focal aircraft's proximity shell

PROBABILISTIC AIRCRAFT ENCOUNTER MODEL

Conflict Analysis

- Aircraft Position & Trajectory Not Known With Certainty
 - Weather Effects
 - Navigation System Inaccuracy

- Bounded Error Regions \rightarrow Probabilistic Trajectory Corridor
 - Randomized Displacement Errors
 - Wind-induced Displacement Errors

PROBABILISTIC AIRCRAFT ENCOUNTER MODEL

Conflict Analysis

• For each pair of discretized error trajectory realizations (for focal and intruder aircraft) we can compute the conflict risk:

Conflict Resolution Constraints

- Probabilistic conflicts generated by PAEM are fit into the constraint structure of APCDM
- Constraints prohibit the selection of particular combinations of flight plans
 - Flight pairs that have a "fatal" conflict
 - Flight combinations that exceed sector ATC conflict resolution capability during any specified time interval
- Penalty function: $\sum_{(P,Q)\in A} j_{PQ} z_{PQ}$
 - Constant \mathbf{j}_{PQ} is determined by conflict geometry
- Polyhedral analysis of conflict constraint structure
 - Derived classes of valid inequalities to tighten representation

Conflict Resolution Constraints

• Define T_{NC} as:

 $\begin{cases} (P,Q,R), P < Q < R: & \text{for some } (s,k), \text{ a subgraph of } G_{sk} \text{ that is} \\ \text{induced by the nodes } P,Q, \text{ and } R \text{ contains precisely two edges,} \\ \text{but no such subgraph for any } (s,k) \text{ contains three edges} \end{cases}$

P Q R

•
$$C_3 = \begin{cases} (x, z): \sum_{(P,Q) \in M_{sk}} z_{PQ} \leq 1, & \forall (s,k) \\ x_P + x_Q + x_R \leq 2, & \forall (P,Q,R) \in T_{NC} \\ z_{PQ} \geq x_P + x_Q - 1, & \forall (P,Q) \in A \\ z \geq 0, & x \text{ binary} \end{cases}$$

• C_3 tightens representation

 Focus is on underlying star-graph convex hull constraints

•
$$C_4 = \begin{cases} (x, z): \sum_{(P,Q)\in M_{sk}} z_{PQ} \leq 1, \quad \forall (s,k) \\ \sum_{Q\in J_r(P)} z_{(PQ)} \leq x_P, \quad \forall r = 1,...,r_P, \forall P \in I^* \\ z_{PQ} \geq x_P + x_Q - 1, \quad \forall (P,Q) \in A \\ z \geq 0, \ x \text{ binary} \end{cases}$$

• C_4 is a provably tighter representation than C_3

CDM Considerations

- Optimal Individual Decisions vs. Optimal Group Decision
 - Each participating airline's decisions represent conflicting objectives
 - Possibly no feasible satisfying solution for these conflicting objectives
 - Inefficient overall use of the NAS
- Collaboration Efficiency
 - Ratio of costs incurred by an airline due to resolution between the group's conflicting objectives to costs obtainable using the airline's individually optimized strategy
- Collaboration Equity
 - Aggregate measure of disparity of costs incurred via group decision

- Fuel Cost: (F_{fp})
 - Base of Aircraft Data (BADA) Operations Performance Model
 - Fuel cost as a function of:
 - Aircraft type
 - Flight envelope
 - Engine thrust
 - Fuel consumption

- Mass
- Aerodynamics
- Reduced power flight
- Ground movement
- Delay Cost: $D_{fp} = (t_{fp}^d)(d_f^c)(l_f)(d)$
 - Length of delay $\left(t_{fp}^{d}\right)$
 - Connection delay cost factor $\left(d_{f}^{c}\right)$
 - Passenger load estimate (l_f)
 - Delay cost factor per passenger-minute (d)

- Total Flight Plan Cost: $c_{fp} = F_{fp} + D_{fp}$
- Flight Cancellations ۲
 - Each flight has a "cancellation" surrogate flight plan
 - Cancellation cost is greater than highest cost surrogate $c_{f0} = \max_{p \in P_{\epsilon}} \left\{ F_{fp} \right\} + (t_{f0}^{d}) (d_{f}^{c}) (l_{f}) (\boldsymbol{d})$

- Airline Collaboration Cost:
 - Ratio of total airline cost after resolving conflicting objectives between all airlines to airline's individually optimized flight costs.

$$d_{a}(x) = \frac{\sum_{f \in A_{a}} \sum_{p \in P_{f0}} c_{fp} x_{fp}}{\sum_{f \in A_{a}} c_{f}^{*}}$$

• We impose $d_a(x) \le D_{\max}$, a maximum CDM-based cost ratio, for all airlines $a = 1, ..., \overline{a}$

- Airline Collaboration Efficiency:
 - Function constructed such that $E_a(x) = \begin{cases} 1 & \text{if } d_a(x) = 1 \\ 0 & \text{if } d_a(x) = D_{\text{max}} \end{cases}$

• This yields:
$$E_{a}(x) = \frac{D_{\max} \sum_{f \in A_{a}} c_{f}^{*} - \sum_{f \in A_{a}} \sum_{p \in P_{f0}} c_{fp} x_{fp}}{\left(D_{\max} - 1\right) \sum_{f \in A_{a}} c_{f}^{*}}, \quad \forall a = 1, ..., \overline{a}$$

- ω -Mean Collaboration Efficiency: $\sum_{a} w_{a} E_{a}(x)$, where $w_{a} = \frac{|A_{a}|}{F}$, $\forall a = 1, ..., \overline{a}$, $\sum_{a=1}^{\overline{a}} w_{a} = 1$, $w_{a} \ge 0$, $\forall a$.
- ω -Mean Collaboration Inefficiency $(1-\sum_{a} w_{a}E_{a}(x))$ is penalized in the objective function

- Airline Collaboration Equity: $E_a^e(x) = E_a(x) \left(\sum_{a=1}^{\overline{a}} w_a E_a(x)\right)$
- ω -Mean Collaboration Inequity: $x^e \equiv \sum_{a=1}^{a} w_a \left| E_a^e(x) \right|$
 - Formulation linearizes the absolute value terms
- Penalty function minimizes disparities in efficiencies (i.e. seeks a more equitable solution)

•
$$\mathbf{m}^{e} = \mathbf{m}^{D} = \mathbf{m}_{0} \sum_{f=1}^{F} c_{f}^{*} = (0.1) \sum_{f=1}^{F} c_{f}^{*}$$

$$\min \left[\sum_{f=1}^{F} \sum_{p \in P_{f_0}} c_{fp} x_{fp} + \sum_{s=1}^{S} \sum_{n=0}^{\bar{n}_{s_n}} m_{s_n} y_{s_n} + m^{p} \sum_{a=1}^{\bar{a}} w_a \left[1 - E_a(x) \right] + mf x^{e} + \sum_{s=1}^{S} g_s w_s + \sum_{(P,Q) \in A} j_{PQZPQ} j_{PQZPQ} \right]$$
subj to:
$$\sum_{p \in P_{f_0}} x_{fp} = 1 \quad \forall f = 1, ..., F$$
Conflict Resolution
Constraints (C₄)
$$\frac{CDM \text{ Constraints}}{(D_{max} - 1)} = 1 \quad \forall f = 1, ..., F$$

$$\sum_{n=0}^{\bar{n}} y_{n} = 1, \quad \forall s = 1, ..., S$$

$$\sum_{n=0}^{\bar{n}} y_{n} = 1, \quad \forall s = 1, ..., S$$

$$w_s = \frac{\bar{n}}{n} v_{g_s}, \quad \forall s = 1, ..., S$$

$$w_s = \frac{\bar{n}}{H} v_{f_s}, \quad \forall s = 1, ..., S$$

$$w_s = \frac{\bar{n}}{H} v_{f_s}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$w_s = \frac{1}{H} \sum_{(f,p) \in \Omega_s} t_{g_s}^{s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_p}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_s}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_s}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_s}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_s}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_s}, \quad \forall s = 1, ..., S$$

$$\sum_{p \in P_{f_0}} z_{f_s} x_{f_s}, \quad \forall s = 1, .$$

- Eight Probabilistic Trajectory Displacement Sets
 - 5 Randomized
 - 3 Wind-induced
- 15 to 45 Realizations
- Nonlinear increasing relationship

- Two-Dimensional Displacement Regions
 - Minimal conflicts generated with vertical displacements
 - FAA-imposed separation much greater than maximum ulletvertical deviations (± 400 ft)
 - Reduces number of realizations and computational effort
- Identified Intervals Versus Threshold Probability

	69 determini	stic conflicts	559 deterministic conflicts		
	Test Set 1		Test Set 2		
p_1	<i>n</i> ₄ = 15	<i>n</i> ₄ = 21	<u>n_4</u> = 15	<u>n_4</u> = 21	
0.50	20	20	178	157	
0.45	27	22	264	230	
0.40	45	44	373	369	
0.35	59	60	495	527	
1/3	68	64	583	600	
0.30	78	80	728	726	
0.25	103	115	991	974	

Virginia Polytechnic Institute and State University

- Baseline Threshold Probabilities
 - Conservative
 - Identify a reasonable number of probabilistic conflicts
 - Comparable to probabilities observed for conflicts identified in previous deterministic analyses

$$p_{\text{thresh}} = \{p_1, p_2, p_{\text{fatal}}\} = \{\frac{1}{3}, \frac{1}{6}, \frac{1}{18}\}$$

- Sensitivity Analysis: Vary p_1 , p_2 , and p_{fatal} proportionally
 - Perturbations to the structures of induced conflict subgraphs
 - Results demonstrate model insensitivity to moderate changes in threshold probabilities

• **Recall:** $d_a(x) \le D_{\max}$

Collaboration \bullet **Efficiency Curve**

APCDM Parameterization

- Slope of Efficiency Curve
- Surrogate Selections
- Parameter **Influences Decision** when $D_{\text{max}} \leq 1.20$

• Four instances run with unconstrained airline collaboration equities

APCDM Instance	$\sum_{\alpha} \omega_{\alpha} E_{\alpha}(x)$	$\max_{a} \left E_{a}^{e}(x) \right $	x ^e
CDM-1	0.9608	0.0187	0.0070
CDM-2	0.9474	0.0321	0.0087
CDM-3	0.5014	0.1867	0.0612
CDM-4	0.9928	0.0437	0.0024

Virginia Polytechnic Institute and State University

APCDM Parameterization

• CDM-3 Analysis

E^{e}_{\max}	Unconstrained	0.15	0.10	0.08	0.06	0.04	0.02
$\sum_{\alpha} \omega_{\alpha} E_{\alpha}(x)$	0.5013	0.4989	0.4953	0.4955	0.4822	0.4818	0.4760
xe.	0.0612	0.0574	0.0523	0.0442	0.0337	0.0217	0.0042
% Objective Increase with Respect to Objective with Unconstrained E_{max}^{e}	0%	0.04%	0.09%	0.18%	0.32%	0.35%	0.41%

• More stringent equity requirements induce reduced collaboration efficiencies

APCDM Parameterization

- Function of the CDM penalty terms in objective
 - Mathematical incentive for maximizing collaboration ulletefficiencies and decision equity (i.e., mimimize "spread")
 - Should not dominate solution
- Definition: "CDM Improvement"

$$0.5 \left[\left\{ \sum_{a=1}^{\bar{a}} \mathbf{W}_{a} E_{a}(x) \right\}_{\mathbf{m}_{0} = \bar{\mathbf{m}}_{0}} - \left\{ \sum_{a=1}^{\bar{a}} \mathbf{W}_{a} E_{a}(x) \right\}_{\mathbf{m}_{0} = 0} \right] + 0.5 \left[\left\{ x^{e} \right\}_{\mathbf{m}_{0} = 0} - \left\{ x^{e} \right\}_{\mathbf{m}_{0} = \bar{\mathbf{m}}_{0}} \right]$$

• Four APCDM instances tested using seven m_0 values

Conflict Constraint Formulation Analysis

• Compactness of Representation: C_3 versus C_4

Label	Test Set *	Edges in A	Maximum Number of Overlapping Sets of Conflicts in any Sector	Maximum Number of Conflicts in any Overlapping Set	Number of C ₃ Constraints Generated (Beyond C ₂)	Number of C ₄ Constraints Generated (Beyond C ₂)
CFT- <u>1.2</u>	1	44	3	9	59	25
CFT-3	1	283	18	20	453	207
CFT-4.5	2	477	23	17	725	262
CFT-6	2	573	24	18	933	314
CFT-7	2	1130	57	45	2621	667
CFT-8	2	1407	68	56	3601	830
CFT-9	2	1448	70	42	3537	895
CFT-10	3	1458	37	140	6351	653
CFT-11	4	1215	74	70	3675	711
CFT-12	4	1436	72	65	4230	870
* All instances use randomized trajectory displacements, except CFT-7, which uses cylindrical SSW wind-induced displacements, and CFT-8 and CFT-12, which use N wind-induced displacements.						

Conflict Constraint Formulation Analysis

- CPLEX default cut generation disabled
- Analysis •
- Recommend C_4 Formulation
- Specialized C_{4} cuts superior to CPLEX general-purpose cuts w.r.t. APCDM

Lahel (I)	\overline{n} .	C ₂ Solution Time	C ₃ Solution Time	C ₄ Solution Time	
Lacor	- 3	(seconds)	(seconds)	(seconds)	
CFT-1	15	0.781	0.821	0.771	
CFT-2 ⁽⁴⁾	15	2.473	1.652	1.822	
CFT-3	15	1.041	1.321	1.191	
CFT-4	15	9.303	9.623	7.661	
CFT-5 ⁽⁴⁾	15	9.754	21.690	20.088	
CFT-6	15	11.276	9.834	9.053	
CFT-7	15	28.711	44.423	30.253	
CFT-8	15	45.835	83.516	61.338	
CFT-9	15	26.978	55.147	29.752	
CFT-10 ⁽⁴⁾	15	65.844	(2)	73.666	
CFT-11 ⁽⁴⁾	15	314.952	(2)	274.504	
CFT-12 ⁽⁴⁾	15	357.574	(2)	295.240	
CFT-1a	3	0.570	0.540	0.600	
CFT-2a ⁽⁴⁾	3	8.422	9.613	9.105	
CFT-3a	3	0.831	0.931	0.971	
CFT-4a	3	53.286	51.774	66.856	
CFT-5a ⁽⁴⁾	3	65.774	74.457	69.420	
CFT-6a	3	59.475	71.793	60.206	
CFT-7a	3	71.012	83.570	53.056	
CFT-8a	3	188.581	294.418	160.661	
CFT-9a	3	195.571	402.200	230.690	
CFT-10a ⁽⁴⁾	7	723.670	(2)	772 506	
CFT-11a ⁽³⁾⁽⁴⁾	9	632.138	(2)	276.407	
CFT-12a ⁽³⁾⁽⁴⁾	9	301.493	(2)	207.888	
(1) "a" label indicates an identical data set with sector canacity constrained as shown in the tiest communi-					

(2) Resulting constraint matrix size exceeded the computer's memory capacity

(3) Solution obtained using an LP/IP gap tolerance of 5%

(4) The instances were examined using final prescribed parameter values

Research Contributions

The APCDM with the following characteristics:

- Probabilistic Conflict Analysis
 - Two alternative representations for trajectory errors
- Continuous time formulation for conflict risk intervals
- Two new classes of valid inequalities
- Flight plan cost model
- CDM Representation
 - Examines distribution of costs as well as maximum spread of costs
- Practical Applications

- Alternative Utility Theory based equity considerations \bullet
- Flight plan generation
- **Dynamic Airspace Issues**
 - Weather Systems •
 - Space Launch SUAs
 - **Dynamic Resectorization**
- Strategic and tactical scenario tests •

Early experiments in transportation

